
ICIC Express Letters ICIC International c⃝2018 ISSN 1881-803X
Volume 12, Number 8, August 2018 pp. 767–774

A VISUAL INTERACTIVE EDUCATION SYSTEM
ABOUT PHYSICS PROGRAMMING

Juan José Jiménez-Torres, Hiroshi Kamada and Yoshio Yamagishi

Yatsukaho Research Center
Kanazawa Institute of Technology

3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
jjimenez@ciencias.unam.mx

Received January 2018; accepted April 2018

Abstract. We present a visual interactive education system about physics programming
concept whereby personal computers or smartphones can be used for the student – physics
programming educative material interface, allowing for a user self-learning tool. This
method is useful for engineering or basic sciences education and teaching using hands-on
programming tools. The concept corresponds with a plan to make available self-learning
educative materials for physics and engineering. Students benefit by being exposed to self-
learning hands-on usage of programming tools. The interactive system concept permits
students to code physics programming scripts and work independently. Education insti-
tutions also benefit by allowing professors to have an alternative evaluation way outside
the traditional classroom. In general, the visual interactive system concept requires few
computer skills and less time is spent on coding programs compared to other self-learning
programming systems. The concept consists of software which points students how to
code a physics simulation and confront their answers with accurate solutions afterwards.
Keywords: Interactive education systems, Physics programming, Simulations, Answer
processing, Answer validation

1. Background. Recent advancements in software have created environments that make
visual interactive education systems useful tools for education in basic sciences and engi-
neering. Actually, interactive software is playing a valuable role in the educative process
[1]. Currently there are many applications of interactive education systems such as sup-
plements to classroom presentations, laboratories, and dynamic textbooks. Interactive
multimedia systems are used, with some success, for educational purposes in developing
countries [1]. According to the United Nations Education for All agenda [1] there are clear
evidences of the positive impact created from the inclusion of technology into education
systems, particularly in developing countries. However, according to UNESCO Education
Strategy 2014-2021 [2] there are developing countries reporting inadequate infrastructure
and lack of qualified teachers as being barriers to educational development. They argue
that the problem of lack of specialists or trained teachers is a significant barrier. [3] shows
that this problem exists even in university education. They made a survey of opinion of
university professors about virtual learning, and found that personal lack of technology
competence was a strong theme. In their survey most professors respondents indicated
that their own skill limitations would be a barrier to creating a virtual interactive edu-
cation course. In that way, [3] suggests that professors must update and develop their
technical skills during their academic careers.

In the literature there is an interactive tool created for the conceptual learning of sci-
ence called Easy Java Simulations: An Interactive Science Learning Tool developed by [4]
in 2003. They argue that users concentrate on writing the relations in the model, spend
little time on the programming tasks and are able to create their own physical models.

DOI: 10.24507/icicel.12.08.767

767

768 J. J. JIMÉNEZ-TORRES, H. KAMADA AND Y. YAMAGISHI

Other Java simulations were created by the National Taiwan Normal University Virtual
Physics Laboratory. However, [4] explains that these simulations are not completely flex-
ible because models are fixed, which implies that users lose time in the adaptation of the
program. Some interactive systems teach programming courses, for example, [5] made a
teaching programming system, where users learn how to create algorithms and work on
image processing. In this system a basic knowledge of the Java syntax is needed. They
argue that programming languages such as C provide the advantage of computational
speed, but users waste time with working on basic input or output operations. They also
mention that languages such as MATLAB give a good functionality, but many program-
ming skills are needed. Furthermore, commercial systems are expensive and need the
accessibility of a supported license [5]. More significantly, in most of these systems users
do not have opportunities to code and evaluate their results afterwards.

2. Objectives. We argue that visual interactive education systems can serve those stu-
dents who cannot attend classrooms. Many students, particularly in developing countries,
find attending hands-on programming courses a not practical option due to lack of re-
sources, demanding professional tasks, and personal responsibilities [6]. In that context we
suggest that interactive education systems can represent a good option to cover some stu-
dents needs. [6] argues that education systems can simulate a computer laboratory where
students and professors are located at completely different positions each other. Accord-
ing to [6] the multimedia material gives the chance for connections between teachers and
students with better learning materials than material with the printed media. Here we
present a visual interactive education system that would help users in their learning pro-
cesses. The interactive education system concept teaches students how to code a physics
simulation and confront their answers with accurate solutions afterwards. Simulations of
physical phenomena can help students to understand concepts of basic sciences. They
can help students to create explanations for them in terms of models and theories. The
visual interactive system concept corresponds to a plan to provide materials and permit
students work on self hands-on programming exercises.

3. Methodology. We present a visual interactive education system about physics pro-
gramming concept whereby personal computers can be used for the student – educative
material interface, allowing for a user self-learning tool. In this work we have taken ac-
count of the basic principles of [7, 8, 9]. The concept corresponds with a plan to make
available self-learning hands-on educative materials for physics and engineering. We chose
to base our system, the visual user interface and the source code on Processing as the
programming language (see [10, 11]). This system lets users focus on coding all steps
needed to learn how to create a basic simulation by defining fundamental parameters and
creating graphical outputs. Students solve basic exercises making code sequences to mod-
ify original code scripts through progressive steps. Then the system provides students
opportunities to confront their outputs with accurate simulations.

We present 3 models about classical mechanics, which were selected for their compre-
hensibility, and generalizability to university students and professors. The intent of this
work is to provide a system with a remembering and understanding cognitive level that
is useful in the process of teaching, learning and evaluation of physics programming. The
contribution and impact of this research directly come from following a technical itinerery
in code that users can utilize and adapt in their academic activities and contexts. This
interactive system not only uses code as a medium to learn basic physical phenomena
in classical mechanics, but also provides contributions in programming skills that will
let users understand steps to simulate these phenomena and create useful computational
tools.

ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 769

4. System.

4.1. System achitecture. The system consists of two parts. The first part includes
an interactive interface, hereafter called Interface for Instructions, which shows users in-
structions to do a proposed exercise. Then users go into a designated programs repository
and code scripts located there, which correspond with all steps to learn how to simulate
a physics phenomenon. Part 2 consists of an interactive interface, hereafter called Inter-
face for Comparisons, which leads users into screens to see if their answers are correct
or not. Figure 1 shows how the comparison programs make a judgement of correctness
for student’s answers. Students code the scripts coresponding with each step for the sim-
ulation, and their outcomes are saved as image files into a destined directory. Authors
previously calculated all accurate image answers, and these outcome sequences are lo-
cated in a specific directory. Accurate solutions are based on the Processing literature
(see [10, 11]) and Fundamentals of Physics (see [12]). Then hikaku programs compare
outcome sequences image by image, pixel by pixel, and show a judgement of correctness.
In case of presence of mistakes, hikaku programs show a message pointing parts where
these mistakes could be come from. If the outcome step is correct, the program shows a
message indicating that the step is done.

Student Program

Accurate Program

Student Outcome

Sequence

Accurate Outcome

Sequence

A1, A2, ..., An

B1, B2, ..., Bn

Compare Image by Image

 Pixel by Pixel

An vs. Bn

Compare outcome

sequences -hikaku-

Judgement of

Correctness

Steps

Figure 1. Structure of the comparison programs called hikaku, which con-
firm if answers from users are correct or not

4.2. Types of exercises and physics simulations. The system includes models of
physics simulations involving examples of free falling objects, projectile motions and a
basic planetary system. These simulations are modeled in a 2D frame following funda-
mental mechanics laws. These exercises include instructions to help students understand
and carry all programming steps out to simulate physical phenomena. This will help
students develop programming skills that will let them create useful computational tools.
First we take a look into a basic planetary system simulation. By means of six instructions
for steps we show user how to simulate a Planet (circle) orbiting a Star (another circle)
located at the center of the window. The description of the program and the Interface
for Instructions for steps are shown in Frames 1 and 2 in Figure 2, respectively, where
Part 1 corresponds with instructions for all steps needed to carry the exercise out. They
refer to instructions to help students understand methods to simulate a basic planetary
system. All instructions for steps and answer options are written in the Processing
programming language. This exercise represents a test model, and the circular motion

770 J. J. JIMÉNEZ-TORRES, H. KAMADA AND Y. YAMAGISHI

TRANSLATING TO
CENTER OF
WINDOW AND PLANET

Step 5

Step 1

A STAR SYSTEM

DRAWING STAR

PLANET ORBITING PLANETARY

COLORCIRCLE

Step 2

Step 4Step 3

Step 6

Step 6Step 5Step 4

In the file Step_5.pde

//PLANET
translate(?,?);
theta+=?; translate(?,?);

rotate(?);

c) rotate(theta2+theta); translate(15,0)
b) rotate(theta2); translate(15,0)
a) rotate(−theta2); translate(15,0)

Options:

and its position to 15,0
Please set the angular movement of the Moon to 0.02

c) //PLANET translate(80,0); theta+=0.05
b) //PLANET translate(0,80); theta+=0.05
a) //PLANET translate(80,0); theta+=−0.05

Options:

translated system and the angular momentum to 0.05
Please set the position of the planet at (80,0) in the

The planet is rotated with the rotate() function
Step 5: Here we ask student create a planet orbiting a static star

ellipse(0,0,?,?);
//PLANET

ellipse(0,0,?,?);
//STAR

Step 4: Here we ask student draw two circles; which will
correspond with the star and planet

c) //STAR ellipse(0,0,0,40); //PLANET ellipse(0,0,10,0);
b) //STAR ellipse(0,0,40,40); //PLANET ellipse(0,0,10,10);
a) //STAR ellipse(0,0,20,20); //PLANET ellipse(0,0,5,5);

Options:

In the file Step_4.pde

Step 1: Here we ask student draw a static circle

Please draw a circle with radius of 40 located at 100, 100

ellipse(?,?,?,?);

In the file Step_1.pde

c) ellipse(100,40,100,40)

a) ellipse(40,40,100,100); b) ellipse(100,100,40,40);

Options:

Step 1 Step 2
Step 2: Here we ask student set color of the static

Please change the color of the static circle into black

In the file Step_2.pde

a) fill(212,0,0); b) fill(0); c) fill(0,0,212)

Options:

fill(?);

Step 3
Step 3: Here we ask student translate the origin to

the center of the window

Please translate the origin into the center of the window

c) translate(width/2,height/2);

b) translate(width,height);

a) translate(width*2,height*2);

Options:

In Step_4.pde file we have translated the origin to the center of

called pushMatrix() and popMatrix(). The pushMatrix() function
the window and drew a star. We also have employed the functions

saves the current coordinate system to the stack and popMatrix()
restores the prior coordinate system. Please draw a star with
radius of 40 and a planet with radius of 10

Visual Interactive

Education System

In the file Step_6.pde

translate(?,?);

In the file Step_3.pde

Step 6: Here we ask student create a moon orbiting the planet.

We use the rotate() function to rotate the planet and its moon.
The moon is set to its position by using the translate()
function. We defined the angular movement as theta2+

PART 1

Simple Planetary System

Frame 1

programming language.

We employ the 3.3 version of the Processing

skills that will let them create useful computational tools

This activity will help students develop programming

understand steps to simulate a basic Planetary System

This program includes basic exercices to help students

We previously have prepared basic templates where student

will create all programs to carry this physics exercise out

Please find and open all Processing files located in the direc−

tory named Planetary_System and go to Text Editor Area

We will create a basic planetary system simulation

Simple Planetary System

with one planet and its moon

a planetary system
This program help students understand steps to simulate

Please find the steps by clicking the buttons on this screen

Frame 2

Figure 2. Part 1 of the interactive system for the basic planetary system
simulation. Frame 1 corresponds with the description of the program, frame
2 with the interface for instructions, and other frames with instructions for
all six steps. All instructions for steps and answer options are written in
the Processing programming language.

is produced by the Processing rotate function. This exercise was tested by a graduate
student. Then we confront all student’s answers with accurate solutions. Frames 1 and
2 in Figure 3 lead users into screens to see if their answers were correct or not. Part 2
in Figure 3 corresponds with all comparisons between students’ outcomes and accurate
models for steps 1 to 6. As can be seen in Part 2, in case of presence of mistakes, the
programs show messages pointing parts where these mistakes could come from. If the
outcome step is correct, the programs show messages indicating that the step is done. On
the other hand, the description of the programs and Interface for Instructions to get in-
structions for all steps needed to learn how to simulate projectile motions and free falling
objects followed the same structure and philosophy as described in the basic planetary
system exercise. These exercises are modeled under the equations of kinematics, where

ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 771

if outcomes are correct or not

In this program students have the opportunity

Simple Planetary System

to evaluate their answers

Validation programs have been prepared to discriminate

TRANSLATING TO
CENTER OF
WINDOW AND PLANET

Step 5

Step 1

A STAR SYSTEM

DRAWING STAR

PLANET ORBITING PLANETARY

COLORCIRCLE

Step 2

Step 4Step 3

Step 6

acceptable or not. They distinguish a student’s answer to
an accurate solution

Simple Planetary System Validating Answers

Accurate solutions are based on the Processing literature (Reas

Please find the validations by clicking the rectangles
and Fry 2014) and Fundamentals of Physics (Benson 1996)

Programs validate each step to discriminate if outputs are

Frame 2

Visual Interactive
Education System

PART 2

Step 2
Comparison

Step 2

It seems that one or more line commands were not inserted
correctly. The correct syntax to fill a circle is fill(rgb). The
default color space is RGB, with each value in the range
from 0 to 255. Black color corresponds with 0

Incorrect Answer

Step 1
Comparison

It seems that one or more line commands were not inserted

width and height

Incorrect Answer

correctly. The correct syntax to draw a circle is ellipse(a,b,c,d)
where a and b set the position, and c and d set the shape’s

Step 1

Step 3
Comparison

Step 3

All line commands were inserted correcly. Step 3 done

Correct Answer

Step 4
Comparison

Step 4

All line commands were inserted correctly. Step 4 done

Correct Answer

Step 5
Comparison

Step 5

Incorrect Answer
It seems that one or more line commands were not inserted
correctly. The correct syntax to rotate a shape is with rotate()
function. To set the position of the planet at (80,0) in the
translated coordinate system is translate (80,0). We have set
theta*=0.05.

Step 6
Comparison

Step 6

Incorrect Answer
It seems that one or more line commands were not inserted
correctly. The correct syntax to rotate a shape is with rotate()
function. To set the position of the planet at (80,0) in the
translated coordinate system is translate(80,0). We have set
theta*=0.05.

Frame 1

Figure 3. Part 2 of the interactive system for the basic planetary system
simulation. Frames 1 and 2 correspond with the interface for comparisons
and others frames with all results from comparisons between student’s and
accurate models.

the free falling object is under the acceleration due to gravity and dissipative forces (see
[12]). All variables were adapted to produce results in mks units. Instructions for steps
and options for answers are shown in Table 1. With this concept we propose a learning
system able to be relevant for real physics applications. Students have opportunities to
code, visualize, simulate and evaluate their answers during the learning process. The
education level provided by the system focuses on the remembering and understanding
cognitive-domain of the Bloom’s Taxonomy (see [13]).

5. Evaluation of the System and Results. We present the evaluation of the system
done by graduate students from the Kanazawa Institute of Technology working within
the group of Prof. Dr. Hiroshi Kamada. The visual interactive system was presented
in lecture format to the students. Fifteen students were asked to answer a questionnaire
including six questions to get their impression about the system. Students chose one

772 J. J. JIMÉNEZ-TORRES, H. KAMADA AND Y. YAMAGISHI

Table 1. Instructions for steps and answer options for the projectile mo-
tion and free fall models. They refer to instructions to help students under-
stand methods to simulate basic physical phenomena. All instructions for
steps and answer options are written in the Processing programming lan-
guage. They follow the same philosophy as steps 1 to 6 in Figure 2. Users
go into a designated programs repository and code their answers to step by
step simulate these physical phenomena. Answers options are written in
cursive letters.

Step Number - Model Instruction for steps ⇒ Options for answers: a), b) and c)
1 - Free Fall Same as step 1 in Planetary System model ⇒ Same as step 1 in Planetary
System model
1 - Projectile Motion Same as step 1 in Planetary System model ⇒ Same as step 1 in
Planetary System model
2 - Free Fall Same as step 2 in Planetary System model ⇒ Same as step 2 in Planetary
System model
2 - Projectile Motion Same as step 2 in Planetary System model ⇒ Same as step 2 in
Planetary System model
3 - Free Fall Set the position vector at (200, 0) ⇒ a) position = new PVector(200, 0); b)
position = new PVector(100, 100); c) position = new PVector(0,200);
3 - Projectile Motion Same as step 3 in Free Fall model ⇒ Same as step 3 in Free Fall
model
4 - Free Fall Simulate a dynamic circle. We have to add the position vector and a ve-
locity vector. We assume constant velocity. The position of the falling circle is given by
ellipse(position.x,position.y, 40, 40); Previously we have defined a velocity vector with ve-
locity = new PVector(0, 1), which simulates a displacement in vertical direction ⇒ a) posi-
tion.dist(velocity); b) position.add(velocity); c) position.dot(velocity);
4 - Projectile Motion Simulate a dynamic circle. We use a data type called float. We
have defined a variable float distance; and set the initial distance to 0. The position of the
falling circle is given by ellipse(position.x,position.y, 20, 20). Previously we have defined an
independent variable distance+, which increases the value of distance. We have set distance+
= 4.0; Please set the x position of the circle to distance+. This will creat a motion effect ⇒
a) position.x = distance+; b) position.y = distance+; c) position.x = distance;
5 - Free Fall Create a bouncing ball simulation in vertical direction with no dissipative
effects. Please set a bouncing ball simulation when ball reaches the floor, that is, if location.x
≥ height is, if location.x ≥ width ⇒ a) velocity.y = velocity.y* −1; b) velocity.y = velocity.y*
−0.5; c) velocity.y = velocity.y;
5 - Projectile Motion Create a projectile motion in two dimension. We simulate a linear
displacement with time+ = 2.2 which increases the value of time. Please set the x and y
positions of the circle to time+. This will make a 2D linear displacement ⇒ a) position.x =
time; position.y = time; b) position.x = time; position.y = height − time; c) position.x =
height − time; position.y = time;
6 - Free Fall Simulate a free falling object with a bouncing effect and dissipative effects
of 0.6 when ball reaches the floor. We have included a gravity vector which is added to
the velocity vector ⇒ a) velocity.y = velocity.x* −0.3; b) velocity.y = velocity.x* −0.6; c)
velocity.y = velocity.x* + 0.6;
6 - Projectile Motion Create a projectile motion under acceleration due to
gravity. We have set velocity to 8, angle to 45, gravity to 9.81 and time+
to 0.65. Find the correct way to define the horizontal and vertical positions of
the projectile motion ⇒ a) position.x = velocity*time; position.y = velocity*time
− 0.5*gravity*time*time; b) position.x = velocity*cos(angle)*time; position.y = veloc-
ity*sin(angle)*time − 0.5*gravity*time*time; c) position.x = velocity*sin(angle)*time; po-
sition.y = velocity*cos(angle)*time − 0.5*gravity*time*time;

ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 773

answer from five options to answer each question. All answers included the following
options: Completely Agree, Agree, Neutral, Disagree, and Completely Disagree. These
questions Q are listed as follows: 1) Students have the opportunity to code the program;
2) Students need advanced computer skill to execute (run) the programs; 3) Students
learn how to produce movement simulation; 4) The destination of links was clear; 5) The
screen design was clean and easy understandable; 6) Reduce the students’ need to look
for external information.

Results are shown in Table 2, where data correspond with number of students per
selected option and average grades. We assigned grade 5 to the agree completely output,
grade 4 to the agree output, grade 3 to the neutral output, grade 2 to the disagree output
and grade 1 to the disagree completely output. We found that students agree they have
the opportunity to code the program and learn how to create a simulation, destination
of links is clear and screen design is clean and easy understandable. Regarding question
2, we found a neutral grade about computing needs of students to execute the program.
Answers for question 6 also show a neutral grade about the students’ need to look for
external information.

Table 2. Results from the evaluation of the system. Number of students
per selected option and average grades.

Agree C. (5) Agree (4) Neutral (3) Disagree (2) Disagree C. (1) Result
Q1 4 6 5 0 0 3.9 ‘Agree’
Q2 2 4 3 5 1 3.1 ‘Neutral’
Q3 4 7 3 1 0 3.9 ‘Agree’
Q4 2 7 4 2 0 3.6 ‘Agree’
Q5 3 8 3 1 0 3.9 ‘Agree’
Q6 1 4 9 1 0 3.3 ‘Neutral’

As described before the system was presented in a conference format to the students.
As future work we propose that they make a hands-on evaluation of the system to get a
first-hand evaluation. As can be seen in Table 2 some students think in a neutral way
that the system reduces the students’ need to look for external information. We believe
that these neutral scores will be improved if students make a hands-on test of the system
instead a first impression gotten from a speech presentation.

6. Conclusions. In this system, most of the programming work is based on instructions
established in advance by authors to make students create their simulation without dif-
ficulties. We present a system concept to point students how to code a simulation and
confront their answers with accurate solutions afterwards. This is, the characteristics of
the system include the ability to teach programming techniques, identify user errors, point
where the user made a mistake and suggest code inputs in the user’s scripts. We have pre-
sented two examples of simulations including real physical phenomena, which are based
on the equations of kinematics. All simulations and comparison programs work fine, we
are now focusing on creating a full integrated system considering that the availability of
a friendly and comprehensive interface is important to make the interactive system moti-
vating and easy to understand for users. Furthermore, we also are working on creating a
bigger variety of physics exercises to make a diverse system.

Acknowledgment. This work was supported by the Japan International Cooperation
Agency. J. J. Jiménez-Torres thanks to the Kanazawa Institute of Technology where this
work was done.

774 J. J. JIMÉNEZ-TORRES, H. KAMADA AND Y. YAMAGISHI

REFERENCES

[1] United Nations, Economic and Social Council, Dialogues at the Economic and Social Council,
http://www.un.org, 2011.

[2] United Nations Educational, Scientific and Cultural Organization, Education Strategy 2014-2021,
UNESCO Open Access Repository, www.unesco.org, 2014.

[3] C. E. Leiserson and C. Vinney, Science professors need leadership training, Nature, vol.523, 2015.
[4] F. K. Hwang and F. Esquembre, Easy Java simulations: An interactive science learning tool, Inter-

active Multimedia Electronic Journal of Computer – Enhanced Learning, vol.5, 2003.
[5] D. Sage and M. Unser, Teaching image-processing programming in Java, Signal Processing Magazine,

vol.20, no.6, pp.43-52, 2003.
[6] S. Deb, Search for effective distance learning in developing countries using multimedia technology,

Signal Processing and Multimedia, CCIS, vol.123, pp.253-259, 2010.
[7] P. X. Contla, H. Kamada and D. Takago, Visual interactive learning system using image processing

about multiple programming languages, Proc. of 2016 IEEE the 5th Global Conference on Consumer
Electronics (GCCE), pp.448-452, 2016.

[8] H. Kamada, K. Nishikawa and Y. Okui, The visual interactive programing learning system using
image processing, Proc. of the 3rd International Conference on Computing Measurement Control
and Sensor Network, pp.158-161, 2016.

[9] Y. Sabinas, H. Kamada and D. Takago, Interactive education system about image processing, Proc.
of the 13th International Congress on Innovation and Technology Development, pp.1-3, 2016.

[10] D. Shiffman, The Nature of Code: Simulating Natural Systems with Processing, 2012.
[11] C. Reas and B. Fry, Processing: A Programming Handbook for Visual Designers and Artists, Mas-

sachusetts Institute of Technology, 2014.
[12] H. Benson, University Physics, Wiley, 1996.
[13] L. W. Anderson, D. R. Krathwohl and B. S. Bloom, A Taxonomy for Learning, Teaching, and

Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, New York, Longman, 2001.

