
ICIC Express Letters ICIC International c⃝2018 ISSN 1881-803X
Volume 12, Number 8, August 2018 pp. 785–790

GROWING DIFFERENTIAL EVOLUTION METHOD
USING RANKING INFORMATION OF SEARCH POINTS

Tsukasa Mannen and Akihide Utani

Faculty of Knowledge Engineering
Tokyo City University

1-28-1, Tamazutumi, Setagaya, Tokyo 158-8557, Japan
g1781815@tcu.ac.jp

Received January 2018; accepted April 2018

Abstract. In evolutionary computation, Differential Evolution (DE) is a method that
optimizes a problem by iteratively trying to improve a candidate solution. Such meth-
ods are commonly known as metaheuristics as they make few or no assumptions about
the problem being optimized and can search very large spaces of candidate solutions. As
systems are enlarged, they are more difficult to handle them due to a mutual dependence
of variables in optimization problems. In this paper, we put forward new methods of es-
caping local solution through improved DE qualities of exploration. These improvements
are performed through the growing differential evolution algorithm, which changes N dy-
namically, and the use of ranking information to change F and CR dynamically. We
conducted the experiment to compare the ordinary DE, growing DE, Ranking Differential
Evolution (RDE), and proposal by using the Schwefel function and the modified Rastrigin
function with a strong mutual dependence of variables.
Keywords: Differential evolution, Growing differential evolution, Ranking differential
evolution, Evolutionary computation

1. Introduction. The Differential Evolution (DE) algorithm [1,2] can be an effective
technique classified as evolutionary computation [3] for optimization if appropriate pa-
rameters are set. DE has a potential as a solution for engineering design complications
because it chooses variables at random during the crossover. DE has drawn the attention
of many researchers all over the world [4-6]. For example, in [5] this algorithm is used for
optimization problems of a real-time big data. In this way, DE has various possibilities.
However, as systems are enlarged, they are more difficult to handle them due to a mutual
dependence of variables in optimization problems.

Although this algorithm is accessible because of the few number of parameters (F :
scaling factor, CR: crossover rate, N : population), it has been regarded as an issue since
each problem needs different appropriate parameters and performance depends on the
configuration. Additionally, falling into local solution during the search process can cause
difficulties as well.

In this paper, we put forward new methods of escaping local solution through improved
DE qualities of exploration. These improvements are performed through the growing
differential evolution algorithm [8], which changes N dynamically, and the use of ranking
information to change F and CR dynamically. The rest of the paper is organized as
follows. In Section 2, we describe the outline of original DE. In Section 3, methodologies
of our proposal are given. In Section 4, the experimental results are reported in detail.
Finally, this paper closes with conclusions and ideas for further study in Section 5.

DOI: 10.24507/icicel.12.08.785

785



786 T. MANNEN AND A. UTANI

2. Original DE. Variations of DE are explained in the form of DE/base/num/cross.
Base indicates how to select the base, num determines the number of vectors used for
mutant vector generation and cross shows how to cross over.

In this paper, we use DE/rand/1/exp: base is chosen randomly, the number of the
vectors to generate a mutant vector is 1, and exponential crossover using the probability
which is decreased exponentially is applied to the crossover. The algorithm of the original
DE is as follows.

• Initialization

This starts with a randomly generated population of N . The vectors are changed over
generations, denoted by t = 0, 1, 2, . . ., tmax. Thus, the i vector solution in the population
can be represented as

Xij = (xi1, xi2,xi3, . . ., xiD)

• Mutation

Biologically, mutation is a change in the gene characteristics of a chromosome. Applied
to evolutionary computation it means a change in the parameters of the vector through a
perturbation with a random element. In DE literature, a parent vector from the current
generation is called target vector, and the offspring obtained through recombination of
target and mutant vector is called trial vector. In classic DE, to create a mutant vector
for each target vector from the current population, three other distinct vectors, say, xt

r1,
xt

r2 and xt
r3 are selected randomly from the current population. The indices r1, r2 and

r3 are mutually exclusive integers randomly chosen from the range [1, N ], which are also
different from the base vector index i. These indices are randomly generated once for
each mutant vector. Now the difference of any two of these three vectors is multiplied by
the scaling factor F and the scaled difference is added to the third vector to obtain the
mutant vector vt

ij. We can express the relation as

vt
ij = xt

r1j + F
(
xt

r2j − xt
r3j

)
(1)

• Crossover

In exponential crossover we randomly choose an integer n between [1, D]. This integer
n determines the index where the crossover operation would start. Another integer K
is chosen from the same interval which denotes the number of parameters that would
contribute to trial vector. The trial vector is generated as ut

ij.

• Selection

This is the operation that determines whether the offspring represented by the trial
vector or the parent represented by the target vector would survive to the next generation.
The procedure is simple. If the fitness of the trial vector is better than target vector, it
moves to the next generation, i.e., t = t + 1 else target vector is promoted.

xt
i =

{
ut

i, f
(
ut

i

)
< f

(
xt

i

)
xt

i, f
(
ut

i

)
> f

(
xt

i

) (2)

3. Methodologies. Growing DE [8] can dynamically add the number of vectors accord-
ing to the stagnation of the search situation. However, in order to change the scaling
factor and the crossover rate dynamically, we propose Growing Ranking Differential Evo-
lution (Growing RDE) using an algorithm proposed in [9], which allows vectors to have
ranking information. The following shows how to change parameters.

• In the case of base having good value

Mutant vectors are generated close to good vectors by decreasing F .
Increase CR so that the parents’ updating speed can be increased and the offspring can

get closer to the mutant vector.



ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 787

• In the case of base having bad value

Generate mutant vectors in a wide range by increasing F .
Decrease CR to slow down the parents’ updating speed and avoid rapid convergence.
As for the range of F and CR, we used the following values indicated in [7,9] in order

not to change these two parameters.

F ∈ [0.5, 1], CR ∈ [0.1, 1]

Growing DE uses a counter. If this counter exceeds a certain threshold, the algorithm
judges that this exploration has fallen into the local solution and then proceeds to add
a new vector into the population. This permits an escape for the population by sharing
information of the new vector. The difference between ordinary DE and Growing RDE is
as follows

• Setting of counter mentioned above as C and threshold Tint

• Updating counter
In each generation, if the best value of this population is not changed, counter C

is counted up as C = C + 1. If C is equal to Tint , the new vector is generated in this
population.

• Ranking after calculation of all vectors’ value
• Setting of F at the stage of mutation

F is determined by the following equation.

Fi = Fmin + (Fmax − Fmin)
(Rrij − 1)

(N − 1)
(3)

• Setting of CR at the stage of crossover
CR is determined by the following equation.

CRi = CRmax − (CRmax − CRmin)
(Rrij − 1)

(N − 1)
(4)

4. Results. We conducted the experiment to compare the ordinary DE, growing DE,
RDE, and proposal by using the Schwefel function and the modified Rastrigin function
with a strong mutual dependence of variables. We set common parameters as F = 0.5,
CR = 0.9 and N = 20. In this experiment, 20000 iterations are run 50 times. As for
growing DE, Tint is set at 50.

Figure 2 and Figure 3 show the proposal finds the optimum solution earliest. Consid-
ering concrete optimization problems, the convergence speed is an important factor.

Figure 1. The modified Rastrigin function and the Schwefel function
(Dim. = 2)



788 T. MANNEN AND A. UTANI

Figure 2. The convergence of each exploration in the modified Rastrigin
function (Dim. = 5)

Figure 3. Convergence of each exploration in the Schwefel function (Dim.
= 50)



ICIC EXPRESS LETTERS, VOL.12, NO.8, 2018 789

Table 1. The number of convergence to the optimum solution in the mod-
ified Rastrigin function during the 50 trials

Algorithm Dim. = 2 Dim. = 5 Dim. = 8
DE 48 14 0

Growing DE 47 26 2
RDE 50 22 1

Proposal 50 29 4

Table 2. The number of convergence to the optimum solution in the
Schwefel function during the 50 trials

Algorithm Dim. = 50 Dim. = 100 Dim. = 150
DE 6 0 0

Growing DE 15 2 0
RDE 28 24 10

Proposal 33 31 21

Table 3. The comparison result of each DE in the modified Rastrigin function

Algorithm Dim. Best Ave. Worst

2 0.00 3.98 × 10−2 9.95 × 10−1

DE 5 0.00 7.99 × 10−1 2.98 × 100

8 1.17 × 10−1 2.83 × 100 6.96 × 100

2 0.00 1.43 × 10−2 6.99 × 10−1

Growing DE 5 0.00 3.90 × 10−1 1.99 × 100

8 0.00 2.41 × 100 5.97 × 100

2 0.00 0.00 0.00

RDE 5 0.00 4.47 × 10−1 1.99 × 100

8 0.00 2.55 × 100 6.96 × 100

2 0.00 0.00 0.00

Proposal 5 0.00 3.39 × 10−1 1.99 × 100

8 0.00 1.86 × 100 3.98 × 100

The larger the numbers are in Table 1 and Table 2, the more effective the algorithms are,
because each number shows how many times the algorithm finds the optimum solution.

Table 3 and Table 4 exhibit that the Ave. and the Worst of the proposal are smaller
than the others. (0.00 means the success in finding the solution.) This indicates that it
is possible to find a value closer to the global optimum solution through searching.

5. Conclusions. This paper attempted to provide a new method of DE. These results
show that this algorithm produces desirable value and is a better alternative in search of
global optimum solution. Our proposed method also makes DE more accessible because
of the way to set parameters.

This experiment has shown that several factors, such as the method of regenerating
vectors that have been generated outside the domain, also affect the results. We will
continue to improve the proposed algorithm by considering these factors. Furthermore,
after comparing the proposed algorithm to other heuristic approaches, we will use this for
concrete optimization problems, such as locating routers in sensor network. As for the



790 T. MANNEN AND A. UTANI

Table 4. The comparison result of each DE in the Schwefel function

Algorithm Dim. Best Ave. Worst

50 0.00 2.81 × 102 1.07 × 103

DE 100 1.18 × 102 4.24 × 102 9.48 × 102

150 2.37 × 102 7.30 × 102 1.42 × 103

50 0.00 1.40 × 102 5.92 × 102

Growing DE 100 0.00 3.05 × 102 7.12 × 102

150 1.18 × 102 5.00 × 102 1.06 × 103

50 0.00 7.11 × 101 4.74 × 102

RDE 100 0.00 9.71 × 101 3.55 × 102

150 0.00 1.68 × 102 4.74 × 102

50 0.00 3.78 × 101 2.37 × 102

Proposal 100 0.00 4.98 × 101 2.37 × 102

150 0.00 9.10 × 101 4.74 × 102

sensor network, these heuristic approaches also have a possibility for optimization of its
power supply.

Acknowledgment. This work is partially supported by the Grant-in-Aid for Scientific
Research (Grant No. 17K00349) from the Japan Society for the Promotion of Science.
The authors also gratefully acknowledge the helpful comments and suggestions of the
Associate Editor and reviewers.

REFERENCES

[1] R. Storn and K. Price, Minimizing the real functions of the ICEC’96 contest by differential evolution,
Proc. of the International Conference on Evolutionary Computation, pp.842-844, 1996.

[2] R. Storn and K. Price, Differential evolution – A simple and efficient heuristic for global optimization
over continuous spaces, Journal of Global Optimization, vol.11, pp.341-359, 1997.

[3] R. Storn and K. Price, Differential Evolution – A Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Spaces, Technical Report TR-95-012, 1995.

[4] S. Das and P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans.
Evolutionary Computation, vol.15, no.1, pp.4-31, 2011.

[5] S. Elsayed and R. Sarker, Differential evolution framework for big data optimization, Memetic Com-
puting, vol.8, no.1, pp.17-33, 2016.

[6] S. Das, S. Mullick and P. N. Suganthan, Recent advances in differential evolution – An updated
survey, Swarm and Evolutionary Computation, vol.27, 2016.

[7] J. Ronkkonen, S. Kukkonen and K. V. Price, Real-parameter optimization with differential evolution,
Proc. of 2005 IEEE Congress on Evolutionary Computation, pp.506-513, 2005.

[8] I. Handa, C. Kurosu and T. Saito, On basic characteristics of growing differential evolution, IEICE
Technical Report, vol.110, no.82, pp.161-164, 2010.

[9] T. Takahama, S. Sakai and A. Hara, RDE: Improving differential evolution by using ranking infor-
mation of search points, Trans. of IEICE (D), vol.J95-D, no.5, pp.1169-1205, 2012.


