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ABSTRACT. In this study, we use an optimization model to solve production planning
problems. A model in coalitional game theory uses a characteristic function defined
under the framework of risk measure, precisely conditional value-at-risk. Through the
model, managers can analyze the degree of risk for each period through a parameter,
which indicates a penalty. This information allows them to employ consistent strategies
to prevent lost revenue.
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1. Introduction. In production planning, managers pursue on using efficient policies to
overcome the loss. An important element to consider during the process is the risk. This
element includes both the uncertainty of outcomes and as well their benefits [1]. Outcomes
are related to the profit and loss statement, and the uncertainty in profits defined by the
distribution function, which points the probable benefits or loss. Profits, unfortunately
may be high or low sometimes [2, 3]. Concerning risk measures, several innovations have
been presented, among which value-at-risk (VaR), conditional value-at-risk (CVaR) also
known as tail conditional expectation, and shortfall expectation (SE) as well lead the list
of accepted methodologies by practitioners.

Within the business world, there may exist scenarios where a group of companies tries
to reach atypical agreement to pursue a common goal. This kind of interaction requires
a fair agreement to avoid disruption of some members of the coalition from the business
treat. While they keep this interaction efficiently they may experiment great benefits,
i.e., the cost to order specific item by a single company would be less while that company
maintains its position on the group coalition of corporations, while the opposite would
be evident when the company decides to act solely. To that extent, strategies chosen
by decision-makers (DMs) need to be efficient and consistent. However, this is not a
simple task to perform due to some factors, take for instance the uncertainty related to
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demand or even necessary policies as regards to inventory management. Among others,
stochastic models can be applied to responding such call. However, because of the existing
interaction among the companies, a typical problem arising would be how the agents
should (companies, different periods for production, etc.) divide the tasks or benefits
equitably after between them. This situation leaves a gap to the game theory usage.

This work attempts to solve production planning problems mainly under the framework
of coalitional game theory with transferable utility (TU games) and risk management as
well. For the sake of fairness and uniqueness in the solution set, we consider Shapley value
[4] defined as a least square value (LS) [5] as the representative of TU games and combine
this approach to risk management [6, 7]. Moreover, it is important to mention that several
studies related to the application of coalitional games in inventory management have been
performed in the last years proving how this theory is efficient for solving this class of
problems [8, 9].

After this introduction, the following section presents an overview of risk and risk
measures with the focus on (CVaR) defined as the characteristic function of the game.
Section 3 briefly describes inventory managements and main policies used within the
process. In Section 4, starting with basic ideas with regards to coalitional games, theories
on inventory games and production planning are also considered. Aiming to support
DMs through mathematical modeling, a quadratic optimization model to solve production
management problems is introduced in Section 5 followed by a numerical example in
Section 6, and then some remarks conclude the study.

2. Risk. This section briefly introduces some ideas about risk. Particular interest is
given CVaR a risk measure for the reason of offering efficient results when dealing with
optimization problem, and here defined as a characteristic function.

Risk is a common element for almost every human activity. According to Holton in [1],
the concept is extended to several different fields. Thus, it has distinct meanings and can
be found in relations such as risk versus probability, risk versus threat, and all payoffs
versus negative payoffs. Usually, risk involves two facts, namely: uncertainty and possible
outcome, which can be positive, i.e., the one with benefit or negative when referring to a
less expected result or in the worst case a total loss of revenue.

2.1. Measures of risk. Risk management is used to analyze and quantify probable
losses, followed by practical actions as regard to pre-established objectives [6, 7]. Some
of the techniques used to measure risk are listed in [13]: value-at-risk (VaR), conditional
value-at-risk (CVaR), expected regret (ER), expected shortfall (ES), tail conditional ex-
pectation (TCE), tail mean (TM), worst conditional expectation (WCE) and spectral
risk measures. Due to the objectives of this article, particular attention is given to CVaR,
which will be described in the following subsection.

2.2. Conditional value-at-risk (CVaR). CVaR is the extension of VaR. Both tech-
niques are popular functions for measuring risk. However, the former is more efficient
when applied to optimization problems [6, 12, 14]. CVaR denotes the mean of the gener-
alized a-tail distribution. More elaborated definition of conditional value-at-risk (CVaR)
for random variables with a possibly discontinuous distribution function can be found in
6, 14].

Consider X a random variable normally distributed with the cumulative distribution
function F,(y) = P{X > y}. The CVaR of X with confidence level a € [0, 1] is formally

given as follows:

CVaRl_a(X):/ ydF>(y) (1)
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with
0, if y<VaR;_(X)
O\ EWZa ©)
While VaR with the confidence level « € [0, 1] can be formally defined as follows:
VaR;_o(X) = min{y: F.(y) > a} (3)
Hence, CVaR;_,(X) denotes the conditional expectation of X, subject to X >VaR;_,(X):
CVaRy_o(X) ={E[X], s.t. X > VaR;_,(X)} (4)

3. Inventory Management. This section deals with inventory management. It de-
scribes the types of inventory policies and ends with the graphical representation of the
so-called economic order quantity.

The field of inventory management was developed in the 20th century with the rapid
growth of engineering and manufacturing industries. According to Fiestras-Janeiro et
al. [16], mathematical models for inventory management were first proposed by Harris
[15]. These models depend upon the choice of inventory policy adopted by those in the
position of such a responsibility. Usually, an inventory graph as a function of time is
used to implement policies. In a nutshell, the main objective of inventory management
is to achieve the minimum cost per time unit based on a predetermined minimum level.
Inventory policies can be classified into three types as stated by Vrat in [18].

1) Economic Order Quantity (EOQ)-Reorder Point (ROP) Policy: requires that the in-
ventory status is observed in a regular base, that is to say, stock levels must constantly
be supervised. A replenishment order of fixed quantity (EOQ) is used when an in-
ventory level falls to a predetermined level (ROP). Two decision variables, (@) for
economic order quantity and (R) for reorder point, are used to evaluate the cost deliv-
ery and quantity delivery. It is expected from these decisions an efficient minimization
of total costs in investments of inventories [17]. Figure 1 represents the dynamic of
this type of policy graphically.

In this case, the order quantity (@) is equal to the difference between the high
inventory level (HIL) and the low inventory level (LIL), i.e., Q = HIL — LIL [17, 18].

Inventory
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Ficure 1. EOQ-ROP policy
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2) Periodic Review Inventory Policy: after a specific time interval (T") a revision for the
stock status is set, and then the order is placed.

3) Optional Replenishment Policy: this policy has two levels of inventories: maximum
level (S) and minimum level (s). Although being similar to the previous policy, if at
the time of review s has high value the replenishment happens only in the next period
of review, and thus no order is placed for the reason that the stock is sufficient for that
time. In the case where the stock level (x) is less than or equal to (s), the inventory
policy is performed to raise the stocks to S level. Formally,

RQ=5S-X if X<Is -
=0 if X>s (5)

Minimum-maximum stock level policy or just (s,S) policy is the other name for the
optional replenishment policy with s, S, and T as decision variables. This policy seems
to be better compared to the previous as long as the decision variables are defined.

4. Coalitional Game. This section deals with coalitional game theory. It starts by
defining the formal representation of this kind of games and then two important properties
are presented without proof. The two subsections describe inventory games briefly and
as well elements related to production planning under demand uncertainty, respectively.

Cooperation helps companies to save on inventory cost. Ordering simultaneously as a
group instead of individually, for instance, appears to be more beneficial to avoid paying
much ordering costs when there exists a value per order settled. In this situation, DMs
have to find efficient and consistent answers to solve the following problem: how should
the total minimal inventory costs of the grand coalition be divided among the companies?

Attempting to solve the problem described above, a state of agreement and an assign-
ment of actions is required to lead with the interactions among companies’ decisions.
Hence, game theory, as proved by an ever-increasing number of papers applying its tech-
niques, and models, can be used to analyze the interactions between agents (players) in
inventory field. In this paper, we focus on one range of game theory, i.e., cooperative
(coalitional) game theory with transferable utility (TU games).

A coalitional game (TU game) on a finite set of players is defined as a pair (IV,v) where
N ={1,2,...,n} is the set of players and v : 2" — R a real-valued called characteristic
function mapping with v(©@) = 0. Any nonempty subset of N (including N itself and all
the one-element subsets) is called a coalition [4, 5]. The characteristic function v(S), i.e.,
the worth of coalition S, represents the total amount of transferable utility that members
of § could earn without any help from the players outside of S. Which is equivalent to
say, it is the maximum sum utility payoffs that the members of coalition S can guarantee
themselves against the best offensive threat by the complementary coalition N\S.

Definition 4.1 (Superadditivity). Given §,7 C N with SNT = O, game (N,v) is
said to be superadditive if

v(SUT) >v(S)+v(T) (6)

Definition 4.2 (Subadditivity). Given two disjoint coalitions S and T, a game (N,v)
15 said to be subadditive when

WSUT) <v(S)+u(T), ¥ S, T C N (7)

Two important properties deserving to be pointed out for the sake of the aim of this
study are the group rationality and the individual rationality. The satisfaction of the
former about production planning is essential. They are described as follows.
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Property 4.1. Efficiency (Group rationality): players distribute among themselves the
resources available to the grand coalition:

Z ®;(N,v) = v(N) (8)

Property 4.2. Individual fairness (Individual rationality): every player gets at least
as much as he would have received without cooperation:

O;(N,v) >v({j}), Vi={L2,...,n} (9)

Inventory Games. Meca et al. [19] analyze a set of games (inventory games) for an
n-company inventory case. Their study extends solutions of inventory management for a
single company to a set of companies which minimizes their joint inventory cost through
cooperation by analyzing within the framework of coalitional game theory. For further
details on inventory games and other types of games the interested reader is referred to
9, 19, 20] and references therein.

Production Planning. Consider D = d; +ds +- - - +d,, as the cumulative demand, with
d;, (j=1,2,...,n), which expresses the demand for order at certain period i of planning.
Demand d = [dy, ds, . . ., d,] follows normal distribution, i.e., d ~ N (J, Z), with d denoting
the expected demand. The inventory for period j is given by S;, (j = 1,2,...,n) and
calculated through Equation (10). Initially, inventory Sy is assumed to be known.

J J
Sj=So+ Y @ — > di (10)
t=1 t=1
with Z; denoting the production level set for each period j, (j = 1,2,...,n) which is
computed by applying Equation (11).
X=Qz+d (11)

1 — « is the confidence level, often set to 0.95 or 0.99, and ¥ is the variance-covariance
matrix (12), with o;; elements.

2 2 2
Wy wi w1 011 012 *°+ Oin
2 2 2 2 2
wiy Wi +u)2 w1 +u)1 091 092 +++ O9p
= : , . = . . . . (12)
2 2 2 2 2 2
wi witwy - witwyt+-o-tuw;, Onl Op2 *'* Onpp

with w? — variance and 0;; = wi + w3 + -+ + w2, (i < j).

5. Model. This section describes a quadratic model representing Shapley value, and
then extends this model to a new one which combines elements of game theory and risk
measures. Among other features, the model makes use of a constant called weighting
factor through which a DM can evaluate the dynamic of production planning during a
set of periods.

As a solution concept in coalitional games, the Shapley value [4] has several alternative
models. In this study, we work on the one proposed in [5], and proved to be a value in
the family of least square (LS) techniques, with a weight function M, s defined as

1 n—2\ "
Mys = n—l(s—l) (13)

where s indicates the cardinality of any coalition S, and n the number of players in the
game. Formally the least square Shapley value is obtained by finding the optimal solution
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of the following problem:

s.t. Zmz = ov(N) (14)

x; >v(i), (Vie N)
Here m(s) = M, is the weight function, and z is a payoff vector with x(S) = >, sz
for any coalition S.

We transformed the previous program into a new one, Equation (15), within the frame-
work of production planning. This model includes order quantity and grand coalition as
constraints, and a weighting factor [11] to support managers while forecasting different
production periods.

2
min Z ZwiM <v(8) - Z 2 (N, v))
T ies
15
s.t. Zzi:v(N) (15)
icS

Notation: w; — weighting factor at period i; z; — Shapley values; Each value from

Equation (13) constitutes the elements of a diagonal matrix M, i.e.,

M, 1

w0

M, s = (16)

0

Mn,n—l i

Characteristic Function. The characteristic function for coalition S corresponds to the
CVaR and is computed through Equation (17) as follows.

v(S) = CVaR(S) -y = D di+ Y. Y 0 ”1_ Zl =) (17)

€S €S jES Zl a)
with,
VaRp(1 —a) — 3 d;
Hg = €5 (18)

1> 2 0
€S jJES

Here, ¢ is the standard normal density, ® denotes the cumulative function and o;; are the
element of the variance-covariance matrix ¥ shown in (12).

6. Numerical Example. Suppose we intent to analyze a production planning for three
periods, i.e., N = {1,2,3}, with Sy = 10, the estimated demand is given by d = [10, 20,
24, 6, 12], while w = 3 and significance level given by a = 0.01. The covariance-variance
matrix (12) is then given by

9 9 9 9
18 18 18 18
18 27 27 27
18 27 36 36
18 27 36 45

™
Il
© © © © ©
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TABLE 1. Characteristic function

| Coalitions | v(S) |

o{1} 0.2
v{2} 0.17
v{3} 0.31
v{12} 0.5
o{13} | 0.64
v{231 1055
W{123) | 1

805

Using Equation (13), we have Ms; = M35 = 0.5. Table 1 shows the characteristic

functions of the 3-periods game.

We tested the model with different scenarios as an

hipotetical case in the mind of a DM while forecasting production described as follows.

e Case Al:
e Case A2:
e Case A3:
e Case A4:
e Case Ab:
e Case AG:
e Case AT:
e Case AS:
e Case A9:

<3
<3
Z3
Z3
<3
z3

Z 07, Wa
Z 07, w1
Z 06, Wa
> 06, w1
> 05, w1
> 05, Wa

= 100
= 100
= 100
= 100
= 100
= 100

Z9 + 23 > 08, w1 = 100
Z1t+ 23 Z 087 Wy = 100
z1 4+ 23 > 0.8, w; = 100

z; and w; are constraints and penalties imposed to those periods, respectively.

Results and Discussion. The above cases were studied (see Table 2) employing Equa-
tion (14) in the first row, whose optimal solutions represent Shapley value. Since there
exists not any new constraint inserted into the model, the corresponding space in the
table is left blank. Optimal solutions for all other cases were attained through Equation
(15) with new constraints as described in the second column, respectively. The last two
columns show how much cost to minimize (badness regarding risk) and the total penalty
the process suffers in each period by considering weighting factor and the constraints.
Table 3 summarizes the single penalty in each period.

TABLE 2. Loss distribution

Cases Constraints Period 1|Period 2|Period 3 0. f. T. Penalty
(badness)

1 0.327 0.267 0.407 0.034 0.000
Al zg3 > 0.7, wy = 100 0.130 0.160 0.700 0.168 —0.080
A2 z3 > 0.7, wy = 100 0.190 0.100 0.700 0.164 —0.080
A3 z3 > 0.6, wy = 100 0.230 0.170 0.600 0.090 0.000
A4 z3 > 0.6, wy; = 100 0.200 0.190 0.600 0.090 0.000
A5 z3 > 0.5, wy = 100 0.201 0.299 0.500 0.074 0.000
A6 zg3 > 0.5, wy = 100 0.329 0.171 0.500 0.074 0.000
AT |z 4 23 > 0.8, wy = 100] 0.200 0.330 0.470 0.073 0.000
A8 |z + 23 > 0.8, wy = 100[ 0.200 0.173 0.627 0.098 0.000
A9 |z + 23 > 0.8, wy = 100[ 0.203 0.200 0.597 0.089 0.000
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TABLE 3. Penalty over individual rationality

| Cases | Period 1 | Period 2 | Period 3 |

1 0.127 0.097 0.097
Al —0.070 —0.010 0.390
A2 —0.010 —0.070 0.390
A3 0.030 0.000 0.290
A4 1.000 0.020 0.290
A5 0.001 0.020 0.190
A6 0.129 0.129 0.190
AT 0.000 0.001 0.160
A8 0.000 0.160 0.190
A9 0.003 0.003 0.317

e All cases observe the group rationality (Property 4.1), while individual rationality
(Property 4.2) is not satisfied. On the production planning viewpoint is preferable
that both or the former property be satisfied rather than only the latter being sat-
isfied.

e The weighting factor (w;) and other constraints allow the DM to predict the dynamics
of the production at each period in different scenarios.

e Shapley value in the first row does not have an overall penalty. Notice that the
decision-maker does not need to impose any particular rule while forecasting the
production for each period.

e Imposing weighting factor to the first and second periods and constraints to the last
period (cases Al and A2), the level of badness is relatively small, while the total
penalty resulted from such policies is negative and equal for both cases.

e The weighting factor affects the total penalty to be null, from case A3 to A9. Major
gain is obtained in periods in which this factor is employed.

e In the three last rows of periods A7 to A9, DM combines two periods to predict the
total penalty his\her policies might suffer as to be null allowing his\her to proceed
with strategies chosen.

e All cases with null penalty present a relatively small amount of badness.

The relationship between Table 2 and Table 3 can be summed as follows.

e While the former shows the total penalty for each case in its last column the later
presents the single penalty for each case in all period.

e Cases Al and A2 present the worst scenarios during the first two periods. Periods 1
(cases A7 and AS) and period 2 (case A3) do not present any penalty.

7. Concluding Remarks. In this study, we presented a model based on TU games
to analyze production, inventory management. A weighting factor was introduced to
support the forecasting process, and a set of constraints chosen by the decision-maker
to control risk at each period was considered as well. A comparison study to analyze
the performance of the model using the traditional economic order quantity would be an
interesting direction for future studies.
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