
ICIC Express Letters ICIC International c⃝2018 ISSN 1881-803X
Volume 12, Number 9, September 2018 pp. 863–870

PREDICTIVE VIRTUAL MACHINE PLACEMENT
IN DECENTRALIZED CLOUD ENVIRONMENT

Suresh Baliram Rathod and Krishna Reddy

Department of Computer Science Engineering
Koneru Lakshmaiah Education Foundation

Vaddeswaram, Andhra Pradesh 522502, India
sureshrathod1@gmail.com; vkrishnareddy@kluniversity.ac.in

Received February 2018; accepted May 2018

Abstract. In distributed cloud environment hosts configured with Local Resource Mon-
itors (LRM). This LRM monitors the underlying hosts’ resource usage, runs autonomous
and balances underlying host’s load by migrating Virtual Machine (VM) instance to other
hosts. LRM shares its own information with another peer hosts after fixed interval. It
takes decision for VM migration by own without considering decisions taken by another
peer hosts. This results in multiple hosts to select the same destination host during VM
migration. Placing multiple VM by multiple host to the destination host without consider-
ing its future behavior may lead to over utilization of the destination host or shuts down.
Static threshold usage limit dynamic environment might be unfeasible solution. To ad-
dress above problems, this paper proposes the predictive host selection and VM placement
policy for decentralized cloud environment. Experimental results show that the proposed
predictive host selection and placement policy reduces extra VM migration occurring due
to over utilization of destination host, and does balances resource usage at source and
destination hosts.
Keywords: Virtual Machine (VM), Host Controller (HC), Controller Host (CH)

1. Introduction and Related Work. In recent years, cloud computing is gaining pop-
ularity because of virtualization. Virtualized resources are deployed, provisioned and
released with minimal management effort [2]. Virtualization addresses varying resource
requirement by incorporating partitioning, isolation, and encapsulation [1]. VM is core
element in cloud environment. It runs on top of the hypervisor and utilizes underlying
host resources. Each VM differs from other VMs by resource, CPU architecture, operat-
ing system, storage type, network utilizations and the job it has. As a result, hosts in DC
have multiple VMs running parallel with different job completion time. Static threshold
limit on underlying hosts resources degrades the host’s performance. VM migration helps
to improve hosts performance. The migration is categorized as the task migration or VM
migration. In task migration, tasks from current VM are migrated to other VMs running
on the same host or other hosts. VM migration involves migrating VM and its associated
memory pages to the other hosts.

Cloud computing on the structure of organizations categorized as, centralized or decen-
tralized architecture. Several cloud providers like Google, Amazon, HP, and IBM provide
services by adopting either centralized or decentralized cloud architecture. Various au-
thors have discussed approaches for VM migration decisions considering hosts current
CPU utilization. The workload on hosts and data center changes frequently, causing
requirement for considering hosts future CPU utilization. This leads to the problem of
selecting data center architecture such that the hosts in it consider adaptive threshold for
resources and do decision for VM migration considering hosts future CPU utilization.

DOI: 10.24507/icicel.12.09.863

863



864 S. B. RATHOD AND K. REDDY

Problem formulation. The mapping of VS to the physical host gives the solution to the
VS placement. Let C be the set of physical host represented as C = {CH1, CH2, CH3, . . .,
CHm} and V be the set of virtual servers deployed on each physical server denoted as
V = {VS1, VS2, . . . , VSn}. Vi,j is the virtual server i deployed on the physical server j,
such that (1 < i < n) and (1 < j < m). Xi,j is the binary decision variable representing
whether the VSi selected from the host Cj. This requires VS placement to the host from
the set of the host Cj. Let t1, t2, . . . , tn be the time interval for VS CPU utilization. The
host CPU utilization at time interval t is given by Equation (1).

CH(i,t)(u) = CH(i,t)idle
+

(
CH(i,t)max − CH(i,t)idle

)
(1)

Here, CH(i,t)max is the power consumption at maximum CPU utilization and CH(i,t)idle

is the power consumption when the server is active but is in an idle state. The mapping
of Vi to the Cj such that the energy consumption of Cj at t is minimum. Let Piutil

be the
CH’s past CPU utilization.

∀
m∑

j=1

Xi,j = 1 (2)

∀j

m∑
i=1

VScpu + Piutil
, iXi,j ≤ Ccpu,j (3)

∀j

m∑
i=1

VSmem, iXi,j ≤ Cmem,j (4)

where i is the virtual server and j is the physical host. The above Equations (2) and (3)
discuss the virtual server should not exceed the physical resources.

Most of the authors considered current CPU utilization, future CPU utilization of the
VM, or two threshold resource limits as the parameter for VM migration. The authors
in [4] discussed the mechanism where host shares its information after fixed interval and
how VS selection and VS placement policy are using neighborhood host information. The
authors in [5] proposed the solution for VM placement using Ant Colony Optimization
(ACO) technique. The authors have tested their approach using P2P unstructured net-
work topology and have considered CPU utilization as a parameter. Energy based VM
placement approach proposed by [6] discussed VM migration by considering penalty cost
and energy consumption as the parameters for VM selection. CPU utilization based dis-
tributed load balancing proposed by the authors in [7] considered hypercube based VM
placement and migration. Authors in [8] have proposed optimum dynamic VM placement
policy considering hosts CPU consumption; they have discussed the Maximum Processing
Power (MPP) and Random host’s Selection (RS) as an approach for VM migration. VM
migrated to destination host by preserving VM’s firewall rule. In [9] the authors have pro-
posed hierarchical decentralized dynamic VM consolidation framework for VM migration,
wherein they discussed how the global controller takes decision for VM migration by con-
sidering hosts future CPU utilization. Distributed load balancing using CPU utilization
proposed by the authors in [10] considered hypercube based VM migration. Randomized
probabilistic technique for distributed live VM migration proposed by [11] discussed hosts
pair formation and initiating VM migration in the selected host pair. Correlation based
VM placement on centralized cloud architecture was proposed by [12]. Cluster based VM
consolidation was proposed by the authors in [13], where they have discussed batch ori-
ented VM consolidation and on demand VM placement. Muti target based VM placement
using genetics algorithm proposed by the authors in [14] considered SLA violation and
CPU utilization as the parameter for VM migration decision making on centralized cloud
architecture. In [15], authors have proposed reinforcement learning based VM placement
wherein the authors discussed how centralized host learns VM deployment and puts host
in sleep mode or in active mode considering the past traces.



ICIC EXPRESS LETTERS, VOL.12, NO.9, 2018 865

In this work authors have contributed VM placement for decentralized cloud environ-
ment. Here, authors have considered destination host’s future utilization to resolve the
problem of the same host identification by multiple hosts during VM placement phase.
The remaining portion of this paper is organized as follows: Section 2 discusses the pro-
posed system followed by Section 3 to discuss the results of the proposed system and at
last the conclusion of paper is given in Section 4.

2. Predictive Decentralized Virtual Machine Placement. The proposed hybrid
decentralized cloud architecture formed considering the distributed features like multi-
tenant architecture, distributed storage, parallel processing and multithreading. Here,
hosts are categorized as HC and CH. Host is termed as HC, if it does the decisions
for VM placement and has running VM’s instances and if host has running VM instances
termed as CH. Hosts in the proposed architecture are configured with the agents as shown
in Figure 1 and its details are below.

HC Resource Monitor (HCRM): This does decisions for VM migration and per-
forms the tasks like collecting CH detail, storing CH detail to current and past utilization
table and providing CHs information to the virtual host manager. This component acti-
vated when CH acts as HC.

Local Resource Monitor (LRM): This interacts with the underlying hypervisor and
does share its details with HCRM. This component is available with every CH.

Virtual Host Manager (VHM): Unlike HCRM, this component activated whenever
the CH acts as HC. This performs source and destination CH identification during VM
migration, does predict destination CH’s future CPU utilization, finds upper threshold
usage for every CH, and finds next HC.

Figure 1. Decentralized hybrid host component diagram



866 S. B. RATHOD AND K. REDDY

When all the hosts (CH) powered on, the CH’s starts connecting to HC. HC after fixed
interval initiates daemon threads that will collect CH detail, manage remote VM, and
identify next HC. CH shares its detail with HC in the form shown in Table 1.

Table 1. Host’s information exchange form

Address No. of VM CPU utilization Status Time

Here, the status flag identifies whether the host currently acts as HC or CH. Address
refers to CH address.

Algorithm 1 DPPVP
1: procedure
2: Host ← GETCONNECTIONDETAIL ()
3: for i← 1 to length [HOSTLIST] do
4: MED ← FINDMEDIANHOST [i]
5: CURRUTIL [i] ← HOSTLIST [i]
6: FHOST [i] ← FINDFUTURE (id)
7: GETMIN ← (CURRUTIL)
8: dest ← GETMAX (CURRUTIL)
9: id ← GETVICTIMID (src)

10: putil ← CURRUTIL [id]
11: if (putil ≥ MED [dest])
12: dest ← FINDNEXT (dest, HOST)
13: else for i← 1 to length [HOST] do
14: if HOST [i] == dest
15: if MED [i] ≥ 0.9
16: MED [id] ← 0.9
17: else if MED [i] ≥ FHOST [i]
18: INITMIGRATION (src, dest)
19: return
20: else if MED [i] ≤ FHOST [i]
21: address ← FINDNEXT (dest, src, CURRUTIL)
22: INITMIGRATION (src, dest)
23: return

VHM at HC initiates the procedure for VM migration using DPPVP algorithm and
next HC identification. DPPVP algorithm is shown in Algorithm 1. CH shares its CPU
utilization to HC at fixed interval. The CH’s current CPU utilization is computed using
Equation (5).

HU =
n∑

i=0

VMi (5)

Here, HU is the host utilization of host u, and it is the sum of all VMi running on the host
u at time interval t. Upon receiving CH detail, VHM at HC creates daemon thread that
will store received CH’s information in current and past utilization table. The HC stores
all active CH’s address by making a call to GETCONNECTION. HC refers HOST to find
source and destination host address during migration. Each host’s dynamic threshold
limit computed using MAD [9] is computed using Equation (7).

MAD =

∑n
t yt−ŷ

n
(6)

UpperThreshold = 1−MAD (7)



ICIC EXPRESS LETTERS, VOL.12, NO.9, 2018 867

Here, yt represents actual CH’s utilization and n represents a number of observations
and ŷ represents fitted value at time t. The VHM, after finding upper threshold limit
for the hosts, it initiates the thread to find the CH that has maximum and minimum
CPU utilization. DPPVP applies GETMIN and GETMAX to finding the CH that has
minimum and maximum CPU utilization.

The CPU utilization of all the CHs is obtained referring current CPU utilization table.
CH with maximum CPU utilization is selected as source and the VM that has maximum
resource consumption is marked as VM to migrate to the CH (destination) having min-
imum CPU utilization at current instance of time. The VM is placed to the identified
destination CH if the identified destination CH has its future CPU utilization less than
its upper threshold and the upper threshold is less than or equal to 0.9.

The VM placement discarded to the identified destination host if the CH’s current
utilization of destination host is greater than 0.9 and the CH’s future utilization greater
than upper threshold. If the computed upper threshold value of CH is greater than 0.9,
the new upper threshold would set to 0.9. The new CH is identified if the VM placement
failed to place on the destination host. On CH identification over the VM from source
CH migrated to the new identified CH. The CH’s future CPU utilization computed by
Doubles Exponential Smoothing (DES) [16], the smoothed value of CH computed using
Equation (10).

St = αyt + (1− α) (st−1 + bt−1) , 0 ≤ α ≤ 1 (8)

bt = γ(st − st−1) + (1− γ)bt−1, 0 ≤ γ ≤ 1 (9)

ft+m = st + mbt (10)

Here, St represents smooth values at time t, the yt represents observed values over a time
period t. bt represents trend factor over time period t values for the previous period bt−1.
The pseudo code for FINDNEXT algorithms is as shown in Algorithm 2. The CH’s is said
to be in normal state, if it has its CPU utilization less than 0.7. If the CH has utilization
greater than 0.7 it is considered as over utilized.

Algorithm 2 FINDNEXT
1: procedure
2: for i← 1 to length [HOSTLIST]
3: for j ← 1 to length [HOSTLIST]
4: if (HOSTLIST [j] ≤ HOSTLIST [j − 1])
5: exchange (HOSTLIST [j], HOSTLIST [j − 1])
6: for i← 1 to length [HOSTLIST]
7: if (haddr ̸= HOSTLIST [i])
8: return HOSTLIST [i]

3. Results and Discussion. The proposed framework is developed considering hybrid
peer to peer network topology. Each CH is configured with KVM/QEMU hypervisor,
OpenJDK 1.6, Libvirt, JNA, python panda and Network File Share (NFS) client. Central
host is configured with NFS server and CH with NFS client. Every CH is configured with
central host address such that on startup CH connects with central host and retrieves HC
address from central host after fixed interval. CH on receiving HC address, they start
sharing their own detail with HC. HC refers the stored CHs detail from the past and
current utilization table during host identification phase, for next HC identification and
to find CH’s future CPU utilization. Current utilization table at HC is shown in Table 2.

In non-predictive VM placement, the VHM at HC applies the VM placement after fixed
interval referring current CPU utilization table. From Table 2, it is found that 10.0.0.3
has maximum CPU utilization and 10.0.0.1 has minimum CPU utilization. DPPVP at



868 S. B. RATHOD AND K. REDDY

HC starts searching VM from host 10.0.0.3 having minimum CPU utilization. If VM hav-
ing CPU utilization is identified, HC initiates the VM migration from CH with address
10.0.0.3 to the CH with address 10.0.0.1. This approach leads to some host’s to over uti-
lized or underutilized and requires shutdown due to migration. Result for non-predictive
VM placement is shown in Figure 2(a) and the time required to migrate VM instance
is in Figure 2(b). Referring Figure 2(a) it is found initial utilization of hosts 10.0.01,
10.0.02, and 10.0.0.3 minimum utilization but after several minute the load at 10.0.01,
10.0.02, and 10.0.0.3 increased over time. To reduce over utilization due to migration,
the predictive VM placement is incorporated. In the predictive VM placement HC refers
both current and past utilization table. HC refers current utilization table to find CH
address for migration and to find next HC. Past CPU utilization table is used to find
destination CH’s future utilization. From Table 2, it is found that the host with address
10.0.0.3 has the maximum CPU utilization at current instant of time and the host with
address 10.0.0.1 has minimum CPU utilization. The HC marks 10.0.0.1 as the destination
host and 10.0.0.3 as the source host. Before VM placement to CH 10.0.0.1, the DPPVP
performs the check and finds whether the future utilization of the host is less than the
upper threshold limit. VM migrated from 10.0.0.3 to 10.0.0.1 if the future utilization is
less than upper threshold limit. DPPVP starts thread to find new CH and initiates VM
migration from 10.0.0.3 to new CH address, if the future utilization of new CH is greater

Table 2. Current utilization table at HC

Host address CPU utilization NO.VM Status
10.0.0.3 0.212 4 FALSE
10.0.0.2 0.098 2 FALSE
10.0.0.1 0.13 1 TRUE
10.0.0.3 0.168 3 FALSE
10.0.0.2 0.128 3 FALSE
10.0.0.1 0.133 1 TRUE
10.0.0.3 0.125 2 FALSE
10.0.0.2 0.165 4 FALSE
10.0.0.1 0.135 1 TRUE
10.0.0.3 0.153 3 FALSE

Figure 2. Non predictive VM placement



ICIC EXPRESS LETTERS, VOL.12, NO.9, 2018 869

Figure 3. Predictive VM placement using DPPVP

than upper threshold limit. Upper threshold for CH is computed using Equation (7) and
future utilization using Equation (10).

The predictive VM placement considers destination host’s future utilization during
VM placement phase and at the same time it ensures that the destination host remains
in normal after VM placement. Here, the proposed predictive VM placement avoids over
utilization of the destination host.

4. Conclusions. In this proposed predictive VM migration for distributed cloud the
categorization of hosts into CH and HC helps to reduce network bandwidth consumption
and CPU power by restring the network traffic between CH and HC. Facilitating decisions
for VM migration at HC helps avoid the same host selection by multiple hosts for VM
placement. Predicting future CPU utilization towards destination host avoids unnecessary
VM placement and over utilization due to VM placement. This work further can be
extended to provide security during migration.

REFERENCES

[1] National Institute of Standards and Technology, https://www.nist.gov/.
[2] Cloud Computing Defined Characteristics Service Levels, Cloud Computing News, https://www.

ibm.com/blogs/cloud-computing/2014/01/cloud-computing-defined-characteristics-service-levels/.
[3] F. Paraiso and P. Merle, A study of virtual machine placement optimization in data centers, The 7th

International Conference on Cloud Computing and Services Science, Porto, Portugal, pp.343-350,
2017.

[4] E. Feller, C. Morin and A. Esnault, A case for fully decentralized dynamic VM consolidation in
clouds, Proc. of the 4th IEEE International Conference on Cloud Computing Technology and Science,
Taiwan, pp.26-33, 2012.

[5] W.-T. Wen, C.-D. Wang, D.-S. Wu and Y.-Y. Xie, An ACO-based scheduling strategy on load bal-
ancing in cloud computing environment, The 9th International Conference on Frontier of Computer
Science and Technology, China, pp.364-369, 2015.

[6] D. Grygorenko, S. Farokhi and I. Brandic, Cost-aware VM placement across distributed DCs using
Bayesian networks, Economics of Grids, Clouds, Systems, and Services, pp.32-48, 2016.



870 S. B. RATHOD AND K. REDDY

[7] R. Benali, H. Teyeb, A. Balma, S. Tata and N. B. Hadj-Alouane, Evaluation of traffic-aware VM
placement policies in distributed cloud using CloudSim, Proc. of the 25th IEEE International Con-
ference on Enabling Technologies: Infrastructure for Collaborative Enterprises, France, pp.95-100,
2016.

[8] Z. Bagheri and K. Zamanifar, Enhancing energy efficiency in resource allocation for real-time cloud
services, The 7th International Symposium on Telecommunications, Iran, pp.701-706, 2014.

[9] M. H. Ferdaus, M. Murshed, R. N. Calheiros and R. Buyya, An algorithm for network and data
aware placement of multitier applications in cloud data centers, Journal of Network and Computer
Applications, vol.98, pp.65-83, 2017.

[10] M. Pantazoglou, G. Tzortzakis and A. Delis, Decentralized and energy-efficient workload manage-
ment in enterprise clouds, IEEE Trans. Cloud Computing, vol.4, no.2, pp.196-209, 2015.

[11] S. Nikzad, An approach for energy efficient dynamic virtual machine consolidation in cloud envi-
ronment, International Journal of Advanced Computer Science and Applications, vol.7, no.9, pp.1-9,
2016.

[12] Y. Zhao and W. Huang, Adaptive distributed load balancing algorithm based on live migration of
virtual machines in cloud, The 5th International Joint Conference on INC, IMS and IDC, Nexus,
pp.170-175, 2009.

[13] X. Fu and C. Zhou, Virtual machine selection and placement for dynamic consolidation in cloud
computing environment, Front Computer Science, vol.9, no.2, pp.322-330, 2015.

[14] F. Teng, L. Yu, T. Li, D. Deng and F. Magouls, Energy efficiency of VM consolidation in IaaS clouds,
Journal of Supercomputing, vol.73, no.2, pp.782-809, 2017.

[15] E. Arianyan, H. Taheri and S. Sharifian, Multi target dynamic VM consolidation in cloud data centers
using genetic algorithm, Journal of Information Science and Engineering, vol.32, no.4, pp.1575-1593,
2016.

[16] Double Exponential Smoothing Insight Central, https://analysights.wordpress.com/tag/double-
exponential-smoothing/, 2017.


