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Abstract. Spatial dispersion and time dispersion are not necessary to be considered in
the conventional narrowband phased array antenna, but they generate huge challenge for
the implement of broadband phased array antenna. To solve the problem of dispersion
in broadband phased array antenna, digital delay filter based on Farrow structure is pro-
posed to complete the beamforming instead of the phase weighting as narrow band phased
array antenna does. In this paper, the effects of spatial dispersion and time dispersion
to phased antenna are introduced firstly. Then the design method of Farrow filter with
symmetric coefficients is deduced when applied to broadband phased array. We also an-
alyze the relationship between filter order and the precision of delay correction. Through
the simulation of antenna pattern, it is proved that the problem of spatial dispersion and
time dispersion is solved effectively, since the main lobe has no deviation in the case of
large bandwidth.
Keywords: Broadband phased array, Beamforming, Spatial dispersion, Time disper-
sion, Digital time delay filter

1. Introduction. In modern society, phased array antenna is widely used in various field
including communication, radar, deep space exploration, etc. [1-3]. High amplification,
electronically scanning and low side lobe are typical advantages for phased array. At
present, the beamforming in phased array is often implemented through phase shifter
and power splitter. With the development of wireless technique, broadband systems
are a tendency in the future. However, when phased array antenna is applied to the
broadband systems, spatial dispersion and time dispersion will produce huge challenge
[4]. Traditional phase shifting in narrow band phased array cannot solve these problems.
Therefore, method of delay for beamforming must be employed. Analog delay line is
the fundamental device as illustrated in [5]. However, the accuracy suffers from the
noncontinuity of analog delay line, since the length of delay line is unchangeable. On
the other hand, digital delay filter can improve the delay accuracy significantly. At the
initial time, digital delay filter was mainly used for software radio receivers with high
speed sampling [6]. And [7] introduces an application of digital delayer in phased array,
but it does not give the design method of delay filter. [8] introduces the design method
of delay filter in time domain and frequency domain. Unfortunately, this procedure is
not suited to digital phased array, because the desired delay time is varying very quickly
with scanning angle and it is impossible to redesign the delay filter in real time. The
delay filter based on Farrow structure is a nice strategy to overcome the shortcoming of
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time domain and frequency domain design methodology, because the Farrow filter can
adjust the delay time without changing the filter coefficients. Generally, Farrow filter is
widely used in multiple rate signal processing [9]. [10,11] introduce how to compute the
Farrow filter coefficients, but these methods are not suited for the broadband phased array
due to the bandwidth. In this paper, a weighted filter coefficient design methodology is
adopted under the assumption that Farrow filter coefficients are symmetric. The new
approach can support the phased array even in broadband system. To be more specific,
this design scheme has the following advantages. Firstly, it can solve the problem of
spatial dispersion and time dispersion caused by broadband. Secondly, delay value can be
adjusted according to actual situation constantly benefited from Farrow structure filter.
Thirdly, with filter order increasing, the precision of delay correction is also improved.
Absolutely this approach has a better prospect of application.

The paper is organized as follows. Background information is given in this section.
Spatial dispersion and time dispersion are discussed in Section 2. Farrow filter design
and performance analysis are detailed in Section 3. The simulation work is presented in
Section 4. Finally, the paper is concluded in Section 5.

2. Spatial Dispersion and Time Dispersion. Considering a uniform linear array with
L elements which are all ideal omnidirectional antennas, the distance d between the two
adjacent elements is equal to half wavelength of the carrier at the central frequency ω0.
Given incident angle θ0 of radio signal, we calculate the direction vector v(θ0, ω0) with
frequency ω0 as

v(θ0, ω0) =
[
1 . . . ejπ(L−1) sin θ0

]T
(1)

Then in the application of narrowband phased array, we define the weight vector w
equal to the direction vector, which is

w = v(θ0, ω0) (2)

However, when the frequency ω of the signal which impinges from angle θ0 is not equal
to center frequency, the actual direction angle of the main lobe θmax is not equal to θ0

according to the definition of radiation pattern. The error between θmax and expected
direction θ0 is

∆θ = θ0 − θmax =
ω0 − ω

ω0

tgθ0 (3)

The deviation of the main lobe caused by expansion of the frequency is called as spatial
dispersion in phased array [4]. According to the equation above it is clear that the
direction deviation is proportional to the relative bandwidth. Of course, the angle offset
will result in degradation for array gain. This is why broadband phased array is unable
to do beamforming through phase shifter as narrowband phased array does.

On the other hand, assuming that the signal at the original point of the coordination
system is

s(t) = m(t)ejω0t (4)

In the above formula, m(t) represents complex baseband signal. The delay between
received signal sL(t) of element L and s(t) is presented as τL, which is named as aperture
fill time. For narrowband signal, the aperture fill time τL is significantly small compared
with the pulse width in radar or compared with the symbol period in communication.
Therefore, the delay of the signal envelope is negligible, i.e.,

sL(t) = m(t − τL)ejω0(t−τL) ≈ m(t)ejω0(t−τL) (5)

When the broadband signal is in discussion, the pulse width in radar is narrow or the
symbol period in communication is small. Then the delay of signal envelope caused by
aperture fill time is non-ignorable [12]. If the phased array antenna uses phase shifter
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Figure 1. The structure of the broadband receiving phased array antenna
with delay filter

to finish beamforming, radar pulse will be expanded, or inter-symbol interference will be
very severe, which is called time dispersion.

In conclusion, broadband phased array cannot use phase shifter to scan the direction of
pattern due to spatial dispersion and time dispersion. So delay devices must be employed.
In digital domain, delay filter is a Finite Impulse Response (FIR) filter whose different
coefficients correspond to different delay values [13]. Figure 1 shows the structure of the
broadband receiving phased array antenna with delay filter. In fact, all kinds of digital
array almost have the similar structure as Figure 1 [14].

3. Methodology of Digital Delay Filter Design.

3.1. Farrow filter model. Digital delay filter is an FIR filter. Assuming that the order
of the filter is N , the coefficient vector can be expressed as

h = [h0 . . . hN ]T (6)

while delay is

τ = nTs + Tl (7)

Namely the delay includes n-time sampling period Ts and a fractional term Tl which is
shorter than the sampling period Ts. For digital signal processing, the first term can
be generated in a simple way through clock control. Hence, the main task is to design
variable fractional delay filters to implement the second term Tl. We define a parameter
as

D =
Tl

Ts

∈ [−0.5, 0.5] (8)

Although certain method can be used to calculate h in time domain or frequency do-
main, the h will change with parameter τ during phased array working. When Field
Programmable Gate Array (FPGA) or Digital Signal Processing (DSP) is taken to im-
plement filter design, these two means cannot satisfy the requirement of real time in
broadband phased array [15].

A delay filter with Farrow structure is a good choice to overcome the disadvantage
mentioned above. For Farrow filter, each element of h is presented as M-order polynomial
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Figure 2. The structure of Farrow filter

of delay parameter D, namely

hn =
M∑

m=0

hnmDm n = 0, 1, . . . , N (9)

Then the structure of Farrow filter can be drawn as Figure 2 [16]. Clearly, we only need
to adjust the input parameter D to generate any desired delay value Tl without updating
hnm.

In order to compute hnm, we assume the coefficient vector h is symmetric since it is
FIR filter. For the sake of convenience, we redefine the coefficient vector of Farrow filter
as

h = c = [c−N . . . cN ]T (10)

Obviously, according to the definition of Farrow structure, we have

cn =
M∑

m=0

c(n,m)Dm n = −N, . . . , 0, . . . , N (11)

Meanwhile, assuming that received signal of the array is low pass signal, the delay filter
is a low pass filter, so pass band is [0, απ], in which

0 < α < 1 (12)

3.2. Object of Farrow filter design. Firstly, the system function of the ideal delay
filter is

H(ω,D) = e−jωD (13)

And the amplitude-frequency characteristics of the Farrow filter is

C(ω, D) =
N∑

n=−N

M∑
m=0

c(n,m)Dme−jnω (14)

Now we define a weighted error function by

J(c) =

∫ απ

0

∫ 0.5

−0.5

W (ω, D)|E(ω,D)|2dωdD (15)
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The error function in the equation above is

E(ω,D) = C(ω,D) − H(ω, D) (16)

At the same time, W (ω,D) is a non-negative function, which has two features, i.e.,

W (ω,D) = W1(ω)W2(D) (17)

W (ω,−D) = W (ω,D) (18)

So the object of Farrow filter design is to find out suitable coefficient set c, namely
c(n,m), and minimize J(c) according to band width απ and delay parameter D.

3.3. Coefficient symmetric Farrow filter design. With the supposition that the filter
coefficient is symmetric, we get that

c(−n,m) =

{
c(n,m) even m
−c(n,m) odd m

(19)

c(0,m) = 0 odd m (20)

By substituting the conclusion into the amplitude-frequency characteristic function of
the filter, it gives that

C(ω, D) = aT Bepe − jbT Bopo (21)

in which
a = [1 cos(ω) · · · cos(Nω)]T (22)

b = [1 sin(ω) · · · sin(Nω)]T (23)

Be =


β(0, 0) β(0, 2) β(0, 4) · · · β(0,M − 1)
β(1, 0) β(1, 2) β(1, 4) · · · β(1,M − 1)
· · · · · · · · · · · · · · ·

β(N, 0) β(N, 2) β(N, 4) · · · β(N, M − 1)

 (24)

Bo =


β(1, 1) β(1, 3) β(1, 5) · · · β(1,M)
β(2, 1) β(2, 3) β(2, 5) · · · β(2,M)
· · · · · · · · · · · · · · ·

β(N, 1) β(N, 3) β(N, 5) · · · β(N, M)

 (25)

The element of the matrix is β(0, 2m′) = c(0, 2m′) n = 0 m′ = 0, . . . , M ′

β(n, 2m′) = 2c(n, 2m′) n > 0 m′ = 0, . . . , M ′

β(n, 2m′ + 1) = 2c(n, 2m′ + 1) n > 0 m′ = 0, . . . , M ′
(26)

Substituting the result above into error function and taking the conjugate property of
the weighted function into consideration, we get the weighted error function

J(c) = J(Be, Bo) =

∫ απ

0

∫ 0.5

0

W (ω,D)|E(ω,D)|2dωdD (27)

Compared to Equation (15), the integration of delay parameter D is defined in [0, 0.5].
Hence, the process to solve c(n,m) can be converted into the process to solve the matrix
(Be,Bo) which minimizes J(Be, Bo).

The weighted error function can be expressed as

J(Be, Bo) = − 2tr[BeA1] + tr
[
BeA2B

T
e A3

]
+ tr

[
BoA4B

T
o A5

]
− 2tr[BoA6] + constant

(28)

in which

A1 =

∫ απ

0

∫ 0.5

0

W1(ω)W2(D) cos(ωD)pea
T dωdD (29)

A2 =

∫ 0.5

0

W2(D)pep
T
e dD (30)
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A3 =

∫ απ

0

W1(ω)aaT dω (31)

A4 =

∫ 0.5

0

W2(D)pop
T
o dD (32)

A5 =

∫ απ

0

W1(ω)bbT dω (33)

A6 =

∫ απ

0

∫ 0.5

0

W1(ω)W2(D) sin(ωD)pob
T dωdD (34)

while
pe =

[
D0 D2 · · · DM−1

]T
(35)

po =
[
D1 D3 · · · DM

]T
(36)

As long as the weight is known, all the equations above can be solved. Considering
that A2, A3, A4 and A5 are symmetric and positive definite, they can be factorized into
U2, U3, U4 and U5 through Cholesky factorization [17].

Finally, according to Lagrangian multiplier method, computing the derivative of J(Be,
Bo) and letting it be zero, we get{

Be = U−1
3

(
UT

3 AT
1 U−1

2

)
U−T

2

Bo = U−1
5

(
UT

5 AT
6 U−1

4

)
U−T

4

(37)

Following the steps above, C(n,m) can be calculated and the design of the Farrow filter
is completed.

3.4. Weight value determination. To evaluate the error between Farrow filter C(ω,D)
we designed and ideal one H(ω,D), we define three parameters as follows

εA max = max{20 lg |E(ω, p)|}, ω ∈ [0, επ], D ∈ [−0.5, 0.5] (38)

εD max = max{|τ(ω, D) − D|}, ω ∈ [0, επ], D ∈ [−0.5, 0.5] (39)

εe =

[∫ απ

0

∫ 0.5

−0.5
|E(ω, D)|2dωdD∫ απ

0

∫ 0.5

−0.5
|H(ω, D)|2dωdD

]1/2

× 100% (40)

And τ(ω, D) denotes the group delay of the designed filter C(ω, D). These errors describe
the performance in amplitude and phase respectively. And the allowable errors should be
given before starting the filter design as Section 3.3 mentioned. Generally, the weight is
set as

W1(ω) = W2(D) = 1 (41)

at the first time. After the filter coefficient is generated, we compute the errors as Equa-
tions (38) to (40) and compare them with the previous values given before design. If the
requirements for error cannot be satisfied, we modify the weight and define weight as

W1(ω) =

{
s1 ω ∈ [0, ω0]
s2 ω ∈ [ω0, αω]

(42)

W2(D) =

{
s3 D ∈ [0, D0]
s4 D ∈ [D0, 0.5]

(43)

In detail, for the frequency interval where the errors are larger than the desired value,
the weight should be increased. Otherwise, the weight keeps small. Now, we need to
design the filter following the methodology in Section 3.3 and evaluate the errors again,
until the errors meet the requirement.
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4. Simulation Result.

4.1. Beamforming with phase shifter and delay filter. In the simulation, a linear
array with 50 elements is employed. Center frequency of the transmitting array is 30.2GHz
with bandwidth 2.4GHz. The direction of beam was set to 45 degrees. DAC conversion
rate is 8GHz. The orders of Farrow delay filter are N = 34, M = 7. The frequency
band is separated into two intervals [0, 0.9] and [0.9, 1] for weight. Delay is separated into
[0, 0.4] and [0.4, 0.5]. The corresponding weight function is

W1(ω) =

{
1 ω ∈ [0, 0.9]
3700 ω ∈ [0.9, 1]

(44)

W2(D) =

{
1 D ∈ [0, 0.4]
47 D ∈ [0.4, 0.5]

(45)

We performed the simulations at two input frequencies, 29GHz and 30.2GHz, respec-
tively. For the reason that digital delay filter is implemented in digital domain, the inputs
should be IF signal. Therefore, the frequencies of inputs in this simulation are set to
1.5GHz and 0.3GHz which correspond to carrier wave 30.2GHz and 29GHz respectively.

The radiation pattern of central frequency at 1.5GHz is shown as Figure 3(a). The
solid line denotes the simulation result with Farrow filter, while the dotted line denotes
that with traditional narrowband phased array weighting. These two lines overlap each
other very well, and the directions of main lobe are both correct. At the central frequency,
there is no any dispersion, so that even narrowband phased array can work perfectly. At
the same time, the plot also proves that the Farrow filter plays the role of phase shifting
and the proposed methodology is correct.

(a) Pattern at 1.5GHz (b) Pattern at 0.3GHz

Figure 3. Patterns of narrowband and broadband phased array

The radiation pattern of low side frequency at 0.3GHz is shown as Figure 3(b). The
main lobe with Farrow filter is pointing to the desired direction. That means Farrow
filter is still effective for broadband array. Whereas the narrow band methodology results
in direction deviation and the gain is reduced with more than 8dB. In fact, the same
phenomenon emerges at high side frequency at 2.7GHz. So the phase shifting used in
narrow band array is not suited for the broadband array.

4.2. Performance of Farrow filter with order. The delay accuracy is the key quantity
to evaluate the performance of Farrow filter, which is decided by the filter order, namely
N and M . Supposing the input signal s(t) is continuous wave with frequency 1.5GHz
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and 0.3GHz respectively, and the delay D = 0.3, the output signal of Farrow filters with
different orders is y(t). Then we define the error by

E(t) = |y(t) − s(t − τ)| (46)

Finally, the simulation patterns are shown in Figures 4(a) and 4(b) for different fre-
quencies. From the picture, we can see that larger order N and M can both reduce the
error. So high order Farrow filter can improve the performance of delay accuracy. Nev-
ertheless, when the orders increase to a certain value, the error will not change anymore.
Moreover, with the same orders, the low frequency signal has less error than the high
frequency signal. This indicates that the delay error is related to the bandwidth.

4.3. Comparison of delay filter design methods in phased array. Taking the same
simulation parameters as in Section 4.1, we design the delay filters through three strate-
gies, which are Farrow filter we proposed, time domain method and frequency domain
method illustrated in [8]. Then we get the pattern as Figure 5, where 5(a) and 5(b) cor-
respond to signal at 1.5GHz and 0.3GHz respectively. For the central frequency, all the
methods play very well in Figure 5(a). However, the main lobe direction has slight devia-
tion for the time domain and frequency domain methods in Figure 5(b), when we simulate

(a) Error at center frequency 1.5GHz (b) Error at side frequency 0.3GHz

Figure 4. Relationship between delay accuracy of Farrow filter and its orders

(a) Pattern at 1.5GHz (b) Pattern at 0.3GHz

Figure 5. Comparison of different filter design methods
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the broadband signal at 0.3GHz. Although the three methods have similar performance,
the advantages of the new design methodology are obvious. Firstly, the coefficient does
not need to compute when the direction of the array is changing. In addition, we can get
less delay error with the same filter order according to the performance of sidelobe.

5. Conclusion. The proposed broadband phased array antenna with the Farrow struc-
ture could overcome the space dispersion and time dispersion problems. However, how to
choose the weight value to simplify the design is the future work to do. In addition, how
to reduce the delay error of the Farrow filter is also needed to research.
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