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Abstract. In this paper, we present a method to construct compactly supported symme-
tric-antisymmetric orthogonal multi-wavelets with dilation 3. By studying the relation-
ship between matrix sequences of multi-scaling function and matrix sequences of multi-
wavelets, we first show that matrix sequences of multi-wavelets with four coefficients can
be constructed from the associated matrix sequences of multi-scaling function. Next, the
explicit formulations of orthogonal multi-wavelets functions with dilation 3 are obtained.
Finally, we give an example to illustrate our general constructive scheme.
Keywords: Multi-scaling, Multi-wavelets, Symmetry, Dilation factor

1. Introduction. As we know, the compactly supported orthonormal real-valued scalar
wavelet with dilation 2 cannot have symmetry except Haar wavelet. However, orthogo-
nality and symmetry are two important properties in practical application. Symmetry of
an orthonormal wavelet can be obtained by considering multi-wavelets or complex-valved
wavelets. The multi-wavelets can simultaneously possess orthogonality, shorter supported,
symmetry, and higher approximation order. So, in recent years, the multi-wavelets have
received more attention both in theory and in application.

Geronimo et al. [1] presented the earliest multi-wavelets by using fractal interpo-
lation. Based on the multi-resolution analysis, by showing the relationship between
length-2N and length-(2N+1) multi-wavelets, the symmetric-antisymmetric orthonormal
multi-wavelets were constructed from their associated multi-scaling functions in [2, 3, 6].
Furthermore, several explicit algorithms for constructing multi-wavelets with high ap-
proximation order and symmetry were discussed in [4, 5]. A finitely supported real-
valued 2-orthogonal filter cannot be symmetric about a point. It has motivated many
researchers to find alternatives for achieving both symmetry and orthogonality. The sym-
metric orthogonal multi-wavelets with dilation factor a > 2 were constructed in [7-10].
Moreover, due to wavelets transform time-frequency localisation characteristic, they have
been widely used in signal analysis, image processing and many other areas [14-20]. The
multi-wavelets are more extensive than scalar wavelets in application of wavelet analysis.
Therefore, the construction of compactly supported symmetric-antisymmetric orthogo-
nal multi-wavelets is very important. In this paper, based on the results of [6-8, 21], we
shall further study symmetric orthogonal multi-wavelets with dilation factor a > 2. By
studying the relationship between matrix sequences of multi-scaling function and matrix
sequences of multi-wavelets, we will consider the construction of univariate symmetric
orthogonal multi-wavelets with dilation factor 3.

The organization of this paper is as follows. The background introduction is given in
Section 1. The summary of multi-wavelets is introduced in Section 2. In Section 3, we will
present a set of explicit formulas to construct the orthogonal symmetric multi-wavelets
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with dilation factor 3. Section 4 providers an example to validate our results. Section 5
concludes this paper.

2. Problem Statement and Preliminaries. In this section, we shall recall some basic
definitions and lemmas. To facilitate our discussion on symmetry and antisymmetry, we
only consider multi-scaling functions with finite and real valued matrix sequences. For
the compactly supported orthogonal complex wavelets with dilation a (a ≥ 2), we can
refer to [9, 10].

2.1. Several definitions and theorems. Let Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕr(x))
T be a

compactly support orthogonal scaling vector-valued function with multiplicity r and dila-
tion factor 3, ϕi(x) ∈ L2(R), i = 1, . . . , r and satisfy the following matrix scaling equation

Φ(x) = 3
∑
k∈Z

P (k)Φ(3x− k), (1)

where {P (k)} is an r× r real-value matric sequence. Ψl(x) =
(
ψl

1(x), ψ
l
2(x), . . . , ψ

l
r(x)

)T
,

l = 1, 2 is the corresponding orthogonal multi-wavelets satisfying

Ψl(x) = 3
∑
k∈Z

Ql(k)Φ(3x− k), l = 1, 2, (2)

where {Ql(k)} is an r × r real-value matrix sequence. Applying Fourier transform to (1)
and (2), respectively, we obtain

Φ̂(ω) = P (ω/3)Φ̂(ω/3), Ψ̂l(ω) = Ql(ω/3)Φ̂(ω/3), l = 1, 2, (3)

where P (ω) =
∑

k∈Z P (k)e−ikω, Ql(ω) =
∑

k∈ZQl(k)e
−ikω. P , Ql are called matrix low-

pass filter and high-pass filter in the application of signal precessing. The set {P,Ql}
is called wavelet filter banks. We know that multi-scaling function and multi-wavelets
are closely related to their corresponding filter banks. So, in the construction of multi-
wavelets, we only consider the construction of multi-filter banks.

For column vector functions A and B with elements in L2(R), we define

⟨A,B⟩ =

∫
R
A(x)B(x)Tdx.

We call a vector of functions Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕr(x))
T an orthonormal scaling

vector if Φ satisfies (1), ϕj ∈ L2(R), and∫
ϕj(x− k)ϕi(x)dx = δ(j − i)δ(k), 1 ≤ j, i ≤ r, k ∈ Z,

where δ is the Kronecker delta.
For compactly supported orthogonal multi-scaling function Φ(x) and its corresponding

orthogonal multi-wavelet Ψl(x), we have the following orthogonal conditions.

⟨Φ(·),Ψl(· − n)⟩ = ⟨Ψl(·),Φ(· − n)⟩ = Or×r,

⟨Ψl(·),Ψl(· − n)⟩ = δ0,nIr, l = 1, 2,

⟨Φ(·),Φ(· − n)⟩ = δ0,nIr,

where Or×r and Ir denote the zero matrix and unit matrix, respectively. This set of
equations is equivalent to the equation∑

k∈Z

P (k)P (k + 3i)T = 3δi,0Ir, (4)

∑
k∈Z

Ql(k)Ql(k + 3i)T = 3δi,0Ir, (5)
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k∈Z

P (k)Ql(k + 3i)T = Or. (6)

Also, in terms of multi-filter banks, the orthogonalities of Φ and Ψl are represented
2∑

k=0

P

(
ω + 2kπ

3

)
P ∗

(
ω + 2kπ

3

)
= Ir, (7)

2∑
k=0

P

(
ω + 2kπ

3

)
Q∗

l

(
ω + 2kπ

3

)
= Or, (8)

2∑
k=0

Ql

(
ω + 2kπ

3

)
Q∗

l

(
ω + 2kπ

3

)
= δl−nIr, n < 3, (9)

where the superscript ∗ denotes the complex conjugate transpose. A sequence satisfying
(4) or (7) is called a matrix conjugate quadrature filter (CQF ). For more details about
orthogonal multi-scaling function, we can refer to [12].

In this paper, we will focus on a class of symmetric or antisymmetric orthogonal multi-
wavelet systems with multiplicity r and four coefficients. The symmetry is one of the most
important properties of multi-wavelets. Before proceeding further, we will introduce some
symmetric and antisymmetric properties on multi-scaling function and multi-wavelets.

Let us consider the situation when all the generating functions are symmetric or anti-
symmetric about the same point, there exists some odd integer n such that, for all j =
1, . . . , r,

ϕj(x) = ±ϕj(n− x), ψj(x) = ±ψj(n− x).

In vector form, we can write this as

Φ(x) = ΣΦ(n− x), Ψ(x) = ΛΨ(n− x),

where Σ and Λ are some diagonal matrices with the diagonal entries equal to ±1. Next,
we will present the following lemmas of multi-scaling functions and multi-wavelets with
symmetry.

Lemma 2.1. Let Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕr(x))
T be a multi-scaling function with di-

lation 3, and satisfy (1), and P be a finite impulse response (FIR) matrix filter. If P
satisfies

SDa(3ω)P (−ω)SDa(−ω) = P (ω), (10)

for some a = (a1, . . . , ar) ∈ Rr, then ϕj is symmetric or antisymmetric about
aj

4
, i.e.,

ϕj

(aj

2
− x

)
= sjϕj(x), 1 ≤ j ≤ r, (11)

where S is the diagonal matrix having coefficients sj on the diagonal, sj ∈ {−1, 1}, and

Da(ω) = diag
(
e−ia1ω/2, e−ia2ω/2, . . . , e−iarω/2

)
. (12)

Lemma 2.2. Assumed Φ is 3-band compactly supported multi-scaling functions with
Φ(0) ̸= 0, P is an FIR matrix filter satisfying (10) for some a = (a1, . . . , r) ∈ Rr.
Let Ψ = (ψ1, . . . , ψr)

T be a vector-valued function defined

Ψ(x) = 3
∑
k∈Z

g(k)Φ(3x− k),

for some FIR matrix filter G. If G satisfies

TDb(3ω)G(−ω)TDa(−ω) = G(ω), (13)

for some b = (b1, . . . , br) ∈ Rr, then

ψj

(
bj
2
− x

)
= tjψj(x), 1 ≤ j ≤ r, (14)
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where T is the diagonal matrix having coefficients tj on the diagonal, tj ∈ {−1, 1}, and

Db(ω) = diag
(
e−ib1ω/2, e−ib2ω/2, . . . , e−ibrω/2

)
. (15)

Lemma 2.3. Let Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕr(x))
T be a compactly supported orthog-

onal symmetric or anti-symmetric multi-scaling function. Ψ(x) is symmetric or anti-

symmetric multi-wavelet associated with Φ(x). If H(z) =
∑3(α+1)−1

k=0 P (k)z−k, Ql(z) =∑3(α+1)−1
k=0 Ql(k)z

−k, l = 1, 2, for some α ∈ Z+/{0}, then

P (z) = z−(3(α+1)−1)diag
(
S0z

3, s0

)
P

(
z−1

)
diag(S0, s0z), (16)

Ql(z) = z−(3(α+1)−1)diag
(
Sl

1z
3, Sl

2

)
Ql

(
z−1

)
diag(S0, s0z), l = 1, 2, (17)

where s0 = ±1, S0, S
l
1, S

l
2 are diagonal matrices with diagonal entries 1 or −1.

For the proof of these lemmas and detailed theory, see [13].

3. Main Results. In this section, we will give a set of explicit formulas for the construc-
tion of orthogonal symmetric multi-wavelet functions with dilation factor 3. Analogous
to the method in [2], we propose the explicit formulations for matrix sequence {Ql(k)}
directly in terms of matrix sequence {P (k)}. The corresponding orthogonal symmetric
multi-wavelet with dilation 3 can be obtained. In this paper, we only discuss the con-
struction of multi-scaling function with 4-coefficient, i.e., the multi-scaling function Φ(x)
satisfies the following scaling relation

Φ(x) = P0Φ(3x) + P1Φ(3x− 1) + P2Φ(3x− 2) + P3Φ(3x− 3). (18)

For the construction of the orthogonal multi-wavelets with 4-coefficient and multiplicity
r, we have the following theorem.

Theorem 3.1. Suppose that Φ(x) is an orthogonal compactly supported multi-scaling
function, and satisfy (18), defining a matrix H, which satisfies

H2 =
[
3Ir −

(
P1P

T
1 + P2P

T
2

)]−1 (
P1P

T
1 + P2P

T
2

)
. (19)

Let

qs
0 = HsP0, qs

1 = −H−1
s P1, qs

2 = −H−1
s P2, qs

3 = HsP3, (s = 1, 2)

where Hs (s = 1, 2) are 2 essentially different symmetric matrices of H2. Take {Ql(k)} =
{qs

k} (s = 1, 2), defining

Ψl(x) = 3
3∑

k=0

Ql(k)Φ(3x− k), l = 1, 2. Ψ(x) =
[(

Ψ1(x)
T,Ψ2(x)

T
)]T

, (20)

then Ψ(x) is compactly supported orthogonal multi-wavelet with dilation 3 associated with
Φ(x), and satisfies the following scaling matrix equation

Ψ(x) =
3∑

k=0

[
(Q1

k)
T, (Q2

k)
T
]T

Φ(3x− k). (21)

Proof: In order to prove this theorem, we only need to verify the following four equa-
tions

P0(q
s
3)

T = O, (22)

P0(q
s
0)

T + P1(q
s
1)

T + · · · + P3(q
s
3)

T = O, (23)

ql
0(q

s
3)

T = O, (l, s = 1, 2) (24)

qs
0(q

s
0)

T + qs
1(q

s
1)

T + · · · + qs
3(q

s
3)

T = 3Ir. (25)
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According to [6], we know that H2 is a symmetric positive definite matrix, and Equations
(22) and (24) can be proved directly by using (5) and (6). We only prove (23) and (25).
In order to verify (23), we have that

3∑
j=0

Pj

(
qs
j

)T
= P0P

T
0 (Hs)

T + P3P
T
3 (Hs)

T − P1P
T
1

(
H−1

s

)T − P2P
T
2

(
H−1

s

)T

=
[(
P1P

T
1 + P2P

T
2

)
−

(
P1P

T
1 + P2P

T
2

)] (
H−1

s

)T
= 0.

Next, to verify (25), we have that

3∑
j=0

qs
j

(
qs
j

)T
= HsP0P

T
0 H

T
s +H−1

s P1P
T
1

(
H−1

s

)T
+H−1

s P2P
T
2

(
H−1

s

)T
+HsP3P

T
3 H

T
s

= H−1
s

{
H2

s

[
3Ir −

(
P1P

T
1 + P2P

T
2

)]
(HT

s )2 +
(
P1P

T
1 + P2P

T
2

)}
(H−1

s )T.

Since H2 is a symmetric positive definite matrix, we have
3∑

j=0

qs
j

(
qs
j

)T
= H−1

s

[
H2

s

(
P1P

T
1 + P2P

T
2

)
+

(
P1P

T
1 + P2P

T
2

)] (
H−1

s

)T

= Hs

[(
P1P

T
1 + P2P

T
2

)
+H−2

s

(
P1P

T
1 + P2P

T
2

)] (
H−1

s

)T

= Hs

{(
P1P

T
1 + P2P

T
2

)
+ 3Ir −

(
P1P

T
1 + P2P

T
2

)} (
H−1

s

)T
= 3Ir.

This completes the proof of Theorem 3.1. �
Next, we will discuss the symmetry of orthogonal multi-wavelet defined in Theorem

3.1.

Theorem 3.2. Let the orthogonal symmetric multi-scaling functions Φ(x) satisfy sym-
metric condition (10). If Hs is a diagonal matrix, which is defined as in (19), then we
have that Ψl(x) defined as in (20) satisfies Ψl(x) = (−1)l−1Ψl(3 − x).

Proof: Since Φ(x) satisfies symmetric condition (10), by Lemma 2.3, we have

P (z) = z−(3(α+1)−1)diag
(
S0z

3, s0

)
P

(
z−1

)
diag(S0, s0z).

In addition, since Hs is a diagonal matrix, and

qs
0 = HsP0, qs

1 = −H−1
s P1, qs

2 = −H−1
s P2, qs

3 = HsP3, (s = 1, 2)

So, we can see that Ψs(x) is the symmetric orthogonal multi-wavelet. �
According to Theorem 3.1, we can see that symmetric-antisymmetric orthonormal

multi-scaling functions lead to symmetric-antisymmetric orthonormal multi-wavelets. This
result can also refer to [3]. From the above discussion, for a given orthogonal multi-scaling
function Φ(x) with four coefficients, Theorem 3.1 and Theorem 3.2 provide a set of explicit
formulas for the construction of orthogonal multi-wavelet, as long as H2 is a symmetric
positive definite matrix. In the next section, the examples will be given to demonstrate
that our proposed approach is efficient.

4. Numerical Example. In this section, we give an example for the construction of
orthogonal multi-wavelet with dilation 3 from their corresponding multi-scaling function
matrix sequences to illustrate the results in this paper.

Example. The multi-scaling function matrix CQF sequences P0, P1, P2, P3 were given
in the following, which satisfy (18) with multiplicity 2, as follows:
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P0 =


10 − 3

√
10

40

5
√

6 − 2
√

15

40

5
√

6 − 3
√

15

40

5 − 3
√

10

40

 , P1 =


30 + 3

√
10

40
−5

√
6 − 2

√
15

40

5
√

6 + 7
√

15

40

15 − 3
√

10

40

 ,

P2 =


10 − 3

√
10

40
−5

√
6 − 2

√
15

40

−5
√

6 − 3
√

15

40

5 − 3
√

10

40

 , P3 =


30 + 3

√
10

40

5
√

6 − 2
√

15

40

−5
√

6 + 7
√

15

40

15 − 3
√

10

40

 .

The matrix symbol P (z) of matrix sequence {Pk} (k = 0, 1, 2, 3) can be given by the
following

P (z) =
1

3

[
P0,0 P0,1

P1,0 P1,1

]
,

where

P0,0 =
10 − 3

√
10

40
+

30 + 3
√

10

40
z +

10 − 3
√

10

40
z2 +

30 + 3
√

10

40
z3,

P0,1 =
5
√

6 − 2
√

15

40
− 5

√
6 − 2

√
15

40
z − 5

√
6 − 2

√
15

40
z2 +

5
√

6 − 2
√

15

40
z3,

P1,0 =
5
√

6 − 3
√

15

40
+

5
√

6 + 7
√

15

40
z − 5

√
6 − 3

√
15

40
z2 − 5

√
6 + 7

√
15

40
z3,

P1,1 =
5 − 3

√
10

40
+

15 − 3
√

10

40
z +

5 − 3
√

10

40
z2 +

15 − 3
√

10

40
z3.

In other words, we have

ϕ1(x) =
10 − 3

√
10

40
ϕ1(3x) +

30 + 3
√

10

40
ϕ1(3x− 1) +

10 − 3
√

10

40
ϕ1(3x− 2)

+
30 + 3

√
10

40
ϕ1(3x− 3) +

5
√

6 − 2
√

15

40
ϕ2(3x) −

5
√

6 − 2
√

15

40
ϕ2(3x− 1)

− 5
√

6 − 2
√

15

40
ϕ2(3x− 2) +

5
√

6 − 2
√

15

40
ϕ2(3x− 3),

ϕ2(x) =
5
√

6 − 3
√

15

40
ϕ1(3x) +

5
√

6 + 7
√

15

40
ϕ1(3x− 1) − 5

√
6 − 3

√
15

40
ϕ1(3x− 2)

− 5
√

6 + 7
√

15

40
ϕ1(3x− 3) +

5 − 3
√

10

40
ϕ2(3x) +

15 − 3
√

10

40
ϕ2(3x− 1)

+
5 − 3

√
10

40
ϕ2(3x− 2) +

15 − 3
√

10

40
ϕ2(3x− 3).

By Theorem 3.1, we see that the matrix sequence {qs
0, q

s
1, q

s
2, q

s
3} is given by

q1
0 =


−5 + 3

√
10

40

5
√

6 − 3
√

15

40

5
√

6 − 2
√

15

40

−10 + 3
√

10

40

 , q1
1 =


15 − 3

√
10

40
−5

√
6 + 7

√
15

40

5
√

6 − 2
√

15

40

30 + 3
√

10

40

 ,
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q1
2 =


−5 + 3

√
10

40
−5

√
6 − 3

√
15

40

−5
√

6 − 2
√

15

40

−10 + 3
√

10

40

 , q1
3 =


15 − 3

√
10

40

5
√

6 + 7
√

15

40

−5
√

6 + 2
√

15

40

30 + 3
√

10

40

 ,

q2
0 =


−5 + 3

√
10

40

5
√

6 − 3
√

15

40

−5
√

6 − 2
√

15

40
−−10 + 3

√
10

40

 , q2
1 =


15 − 3

√
10

40
−5

√
6 + 7

√
15

40

−5
√

6 − 2
√

15

40
−30 + 3

√
10

40

 ,

q2
2 =


−5 + 3

√
10

40
−5

√
6 − 3

√
15

40

5
√

6 − 2
√

15

40
−−10 + 3

√
10

40

 , q2
3 =


15 − 3

√
10

40

5
√

6 + 7
√

15

40

−−5
√

6 + 2
√

15

40
−30 + 3

√
10

40

 .

The matrix symbols Q1(z), Q2(z) of matrix sequence {qs
k} (k = 0, 1, 2, 3) can be given by

the following

Q1(z) =
1

3

3∑
k=0

q1
kz

k =
1

3

[
Q1

0,0 Q1
0,1

Q1
1,0 Q1

1,1

]
, Q2(z) =

1

3

3∑
k=0

q2
kz

k =
1

3

[
Q2

0,0 Q2
0,1

Q2
1,0 Q2

1,1

]
,

where

Q1
0,0 =

−5 + 3
√

10

40
+

15 − 3
√

10

40
z +

−5 + 3
√

10

40
z2 +

15 − 3
√

10

40
z3,

Q1
0,1 =

5
√

6 − 3
√

15

40
− 5

√
6 + 7

√
15

40
z − 5

√
6 − 3

√
15

40
z2 +

5
√

6 + 7
√

15

40
z3,

Q1
1,0 =

5
√

6 − 2
√

15

40
+

5
√

6 + 2
√

15

40
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Then its corresponding orthogonal multi-wavelets ψ(x) are given by
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Figure 1 gives the graphs of scaling functions and the corresponding multi-wavelets
with support [0, 3]. These wavelets have the higher order of approximation than the
Daubechies scaling function and wavelet with the same support.

Figure 1. (a) ϕ1; (b) ϕ2; (c) ψ1; (d) ψ2;(e) ψ3; (f) ψ4
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5. Conclusions. The wavelets play important roles in the fields of signal processing,
image processing and communication systems. For vector-valued signal processing, the
multi-wavelets have greater freedom and flexibility. It enables a finer frequency partition-
ing and can provide a more compact representation of signals. In this paper, we propose
a method for the construction of compactly supported orthogonal symmetric or anti-
symmetric multi-wavelets with dilation 3. We first obtain a set of explicit formulations
for the matrix sequences of the multi-wavelet from its corresponding matrix sequences
of scaling vector function. Next, the compactly supported orthogonal symmetric multi-
wavelets with dilation 3 can be constructed via their corresponding matrix sequences.
Finally, an example we give shows that our proposed approach is operable.

It is of interesting in both theory and application to have a family of compactly sup-
ported symmetric orthonormal wavelets. In the future, we will focus on the construction
of compactly supported orthogonal symmetric or anti-symmetric multi-wavelets and com-
plex wavelets with any general dilation factor.
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