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Abstract. This paper introduces a new method for fuzzy modeling based on sparse
Bayesian techniques. The proposed method is called sparse Bayesian fuzzy inference sys-
tems (B-sparseFIS). There are two main procedures in the paper. First, initial fuzzy rule
antecedent part is extracted automatically by an AP clustering method; second, the sys-
tem consequent parameters are identified and simplified with sparse Bayesian techniques
such that more consequent parameters will approximate to zero. An example is provided
to test the effectiveness of the proposed algorithm. Furthermore, the performances of
the algorithm are validated through the results of statistical analyses including parameter
estimate error and RMSE.
Keywords: T-S fuzzy system, Sparse Bayesian inference, AP clustering

1. Introduction. Fuzzy model is one of the most important modeling approaches which
belongs to fuzzy logic theory [1]. It is useful in nonlinear dynamic system modeling,
prediction, and model-based control [2]. Among different fuzzy models, the Takagi-Sugeno
(T-S) fuzzy model [3] can be easily applied in various kinds of nonlinear system modeling,
which decomposes a nonlinear system into a collection of local linear models. If the T-S
fuzzy system is selected as the equivalence model in our study, there are two problems
to confront in the T-S fuzzy system identification: structure identification and parameter
estimation [4]. Structure identification includes the selection of the number of rules.
Parameter estimation respectively includes antecedent membership functions (AMFs) and
the corresponding consequent parameters. We try to select the appropriate fuzzy rules
and make the desired performance to be a meaningful problem in the T-S fuzzy system.

Fuzzy clustering methods are most common and widely used approaches in T-S fuzzy
modeling. Fuzzy clustering provides a certain advantage over other techniques since the
fuzzy partition of the input (or the product) space is obtained as a direct result [5]. In
order to search structure rules, various clustering algorithms are widely used in [6, 7, 8,
9, 10, 11], such as k-means algorithm [6], fuzzy c-means algorithm [7, 8, 9], hierarchical
fuzzy-clustering [10], and IT2-FCRM clustering approach [11].

In our paper, we focus on T-S fuzzy system consequent identification parameters using
sparse Bayesian approach. Too many consequent parameters will increase its computation
complexity. In order to reduce the consequent parameter number, sparse representation
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methods were widely used in much literature. Here, block-structured sparse representa-
tion [12], as a successor of traditional sparse representation [13], was first introduced and
investigated in the literature of the so-called group least-absolute-shrinkage-and-selection
operator (LASSO). It provides a regression model, where many blocks of the regression
coefficient with small contribution would shrink exactly to zero while keeping high pre-
diction accuracy [14]. Motivated by sparse representation, we exploit a sparse Bayesian
fuzzy inference systems, which is called B-sparseFIS. Based on the number of sparsed
consequent parameters in each rule, number of the rules is fine turned.

The aim of this paper is to develop a systematic fuzzy modeling mechanism. The rest
of this paper is organized as follows. Section 2 describes the Takagi-Sugeno fuzzy system.
In Section 3, the selected fuzzy rules consequent parameters are identified and simplified
with sparse Bayesian techniques such that more consequent parameters will approximate
to zero. Section 4 provides an illustrative example for the performances of the proposed
algorithm. Finally, we offer some concluding remarks in Section 5.

2. Takagi-Sugeno Fuzzy System. The T-S fuzzy system can be described by IF-THEN
fuzzy rules. Each rule consists of fuzzy rule antecedent and consequent.

Rule i : If xt
i1 is Ai1, x

t
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t
in is Ain, then

yt
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t
in
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rule.

The final output of the T-S fuzzy model can be expressed by a weighted mean defuzzi-
fication as follows:
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where cij and σij denote the mean and the variance of the corresponding bell-shaped
membership function, respectively.

As the definitions in [15], Φ = [Φ1, Φ2, . . . , Φr],
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Φ is called to be dictionary of the T-S fuzzy system and Φi is the subdictionary of the

ith fuzzy rule. The fuzzy model output ŷ can be expressed as follows

ŷ = Φθ =
r∑

i=1

Φiθi (4)
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3. Identification of Takagi-Sugeno Fuzzy System Using Sparse Bayesian Tech-
nology. In this section, we use the affinity propagation (AP) clustering algorithm to
produce an input space fuzzy partition [16]. The consequent parameters are identified by
using sparse Bayesian technology. The number of fuzzy rules is fine turned again based
on consequent parameters. In the subsections, the above introduction will be analyzed in
detail.

3.1. Fuzzy rule antecedent rough selection. Fuzzy rules can be obtained with some
prior knowledge; nevertheless, unsupervised clustering methods are extensively exploited
to roughly partition the input space and determine the fuzzy rule antecedent. We use
the clustering algorithm based on AP, which is an unsupervised learning algorithm for
exemplar-based clustering. AP clustering algorithm outputs a set of data points that best
represent the data (exemplars), and assignments of each non-exemplar point to its most
appropriate exemplar based on input similarities between data points. Then the input
data is partitioned into clusters.

By the iterative AP clustering algorithm, each cluster is associated with one fuzzy rule.
Each dimension of input corresponds to a bell-shaped membership function Aij of fuzzy
rule antecedent. The cluster center and variance in each dimension are written as cij and
σij for i = 1, 2, . . . , r and j = 1, 2, . . . , n. In order to control the bandwidth of bell-shaped
membership function, σij should be in a reasonable range. We set σij = max{σij, ε}, and
ε is a small positive integer. After the rules determined, the mathematic model can be
represented by the T-S fuzzy system, the corresponding consequent parameters of which
are identified with regression model.

3.2. Sparsity representation for the consequent parameter. After the premise
fuzzy set parameters have been obtained, we start to compute the consequent parameters
θ. The flowchart of the sparse Bayesian T-S fuzzy system identification is in Figure 1.
Here, we want to go a step further and make the consequent parameters also sparse,
again without losing model accuracy. This is achieved by using sparse Bayesian approach
and evokes the useful weights selection, as some dimension of inputs with low weights in
the rules may be ignored [17]. This reduces computational complexity of the consequent
parameters, which are less significant in these regions. Based on Algorithm 1, we exploit
an effective method for the T-S fuzzy system identification, which is called B-sparseFIS.

Figure 1. Flowchart of the B-sparseFIS algorithm
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Algorithm 1 Sparse Bayesian T-S fuzzy system identification algorithm
Input:

system dictionary Φ = [Φ1, Φ2, . . . , Φp] from input data.
1: for p = 1, 2, . . . do
2: Fuzzy rules selection: select K important fuzzy rule together with the AP clustering

algorithm.
3: Consequent parameters sparsity representation: Estimate consequent parameters

with sparse Bayesian technology.
4: end for
Output:

The optimal sparse consequent parameters are determined with the minimal rules.

There are many documents that solution for θ is given using least-squares, maximum
likelihood estimation methods. These methods easily result in overfitting and large com-
putational complexity. So instead of the earlier regularization weight penalty, we now
define a prior distribution of θ as follows

p (θ|α1, . . . , αM) =
M∏

m=1

[
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1
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1
2
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2
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)]
(5)

We now have M hyperparameters α = (α1, . . . , αM), one αm independently controlling
the variance of each weight θm.

We assume independent Gaussian noise: tn ∼ N (y(xn; θ), σ2), then tn = y(xn; θ) + εn,
where εn is an independent stochastic variable satisfying Gaussian distribution with zero
mean value and variance σ2

ε , i.e., p(ε) ∼ N
(
0, σ2
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)
. The corresponding likelihood can be

written as:
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Using the Bayesian techniques, we obtain the posterior distribution over all unknowns:
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Again we will adopt the type-II maximum likelihood approximation where we maximize
p(t|α, σ2)
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Considering Equation (10) and making σ−2 = β, the log of the evidence is then given

as follows
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ln
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Using the Woodbury inversion identity:(
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differentiate Equation (11) with respect to α, β respectively and setting to zero. Recal-
culate α, β using their value in the last computation.

The iterative re-estimation formula can be represented as

αre
i =

γi

µ2
i

,
(
σ2

)re
=

||(t − Φµ)||2

N −
M∑
i=1

γi

(14)

where

γi = 1 − αre
i Σii (15)

The optimal hyper-parameters values αMP , βMP are obtained until convergence in the
re-estimation.

In the re-estimation above, we generally find that many of αi tend to infinity or be-
come numerically indistinguishable from infinity. From (7), this implies that p(θi|t, α, σ2)
becomes highly peaked at zero. The corresponding consequent parameters thus can be
pruned, and sparsity is realized.

The optimal sparse conseqence parameters are written as

θMP = βMP ΣΦT t (16)

Remark 3.1. Sparse Bayesian technology is used in computing the consequent parameters
θ. Some dimension of inputs with low weights in the rules may be ignored. Consequent
parameters are simplified in the model identification. We can obtain the relative simple
parameter but not lose the prediction accuracy too much. The advantage of this kind of
methods is that the consequent parameters sparsity improves scalability of algorithm for a
large-scale training dataset in Bayesian inference framework.

4. Numerical Example. In this section, the chaotic Mackey-Glass time series example
is studied to evaluate the advantages and the effectiveness of the proposed identification
method. Root mean square error (RMSE) criterion is considered, which is measure of
deviation between the true values and estimated values.

RMSE =

√√√√ 1

T

T∑
t=1

(y(t) − ŷ(t))2

y(t) is the true output value without noise. ŷ(t) is the estimate value.
Chaotic Mackey-Glass time series is generated by the chaotic Mackey-Glass differential

delay equation [18] of the form:

ẋ(t) =
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t)
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τ is parameter of time delay, which is set τ = 17 in the simulations. A set of N = 1000
input-output samples are generated from the Mackey-Glass time series x(t), where 118
≤ t ≤ 1117. The performance of the proposed model is contrasted with some other models
existing in the literature. The first 500 pairs were used as the training samples while the
remaining 500 pairs were the testing samples for assessing the predictive performance. We
consider the RMSE as the performance index. Using the proposed algorithm we developed
a fuzzy model which estimates the future point x(k + 6), given the four inputs x(k − 18),
x(k− 12), x(k− 6), x(k). Initialized by setting number of cluster k(1) = 30, which means
that the algorithm is started from a random cluster number. The maximal selected rule
number max k = 8. In order to compare the results with [6, 7, 8, 9, 10, 11], we also try to
control the maxmum number of rules max k equal to (or less than) their number of rules.
The fuzzy models are trained for 100 epochs. The average values of the premise parameter
and corresponding identified consequent parameters are listed in Table 1. The zero values
of θi in Table 1 are the dimensions ignored. Figures 2(a) and 3(a) show the comparison
of the actual output and the model output produced by the system, while Figures 2(b)
and 3(b) show the respective error. We can see that the errors are small in the acceptable
range. In our method, we focus on the consequent parameters sparsity and its use in
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Figure 2. Comparison of our model and the real system for the Mackey-
Glass system using training data
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Figure 3. Comparison of our model and the real system for the Mackey-
Glass system using testing data
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Table 1. Parameter values for the Mackey-Glass model

Fuzzy rule Parameter

R1 c1 1.093 1.187 0.994 0.852

σ1 0.100 1.100 1.100 1.100

θ1 2.858 −0.800 0 −1.596 0.520

R2 c2 0.896 1.138 1.184 0.852 0.651

σ2 0.110 0.100 0.100 0.124

θ2 1.152 0 0 −0.849 0.592

R3 c3 1.181 0.966 0.726 0.742

σ3 0.100 0.100 0.100 0.112

θ3 1.694 −1.028 0.778 −0.974 0.660

R4 c4 0.625 0.963 1.074 1.144

σ4 0.119 0.100 0.100 0.100

θ4 1.766 0 0 −1.408 0.641

R5 c5 0.821 0.641 0.914 1.136

σ5 0.105 0.100 0.100 0.106

θ5 0.980 0 0 −0.441 0.547

R6 c6 1.119 0.662 0.602 1.027

σ6 0.100 0.116 0.100 0.100

θ6 0 0 0.232 0.573 0.583

Table 2. Comparison results for the Mackey-Glass model

Model Number Number Number of RMSE (test)

of inputs of rules parameters

Wang and Mendel [6] 9 121 – 0.01

ANFIS [7] 4 16 104 0.0016

Chen et al. [8] 4 9 81 0.0264

Kukolj [9] 4 9 117 0.0061

H-TS [10] 4 6 78 0.0041

Zou et al. [11] – 10 – –

Our model 4 6 68 0.067

adjusting the cluster number (rule number). Going through the statistical analysis of the
prediction results in Table 2, it becomes apparent that the number of parameters equals 6
in our model, which is much less than the other methods. The RMSE value equals 0.067,
which can meet demand in the practical application.

5. Conclusion. In this study, a Bayesian identification framework for T-S fuzzy system
is proposed. The main advantage of this approach is that the sparse Bayesian techniques
are applied in consequent parameters identification and consequent parameters number
sparsity. Many consequent parameters approximate to zero, which can be ignored. We
present the numerical example to demonstrate the method. The results in the simula-
tion have verified the validity of the proposed algorithms for T-S fuzzy system. In the
future, noninformative prior Bayesian identification framework for T-S fuzzy system is an
interesting topic.
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