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ABSTRACT. A mapping which has real number interval [—1,1] on the codomain is called
a bipolar fuzzy set. Bipolar fuzzy can be applied in some algebraic structures, for ezample,
K-algebra. An algebraic structure which is built from group G and fulfilling several azioms
is called K-algebra. Not only bipolar fuzzy, but also bipolar anti fuzzy can be applied
to K-algebra. In this paper, we investigated bipolar anti fuzzy ideals of K-algebras and
discussed related properties. We characterize bipolar anti fuzzy ideal of K-algebras by
means of positive anti B-cut and negative anti a-cut.
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1. Introduction. The fuzzy set theory was firstly introduced by Zadeh [1]. A mapping
which has real number interval [0, 1] on the codomain is called fuzzy set. Fuzzy sets are
widely applied to various sciences, including algebra. Zhang [2] introduced the concept
of bipolar fuzzy set by developing from the fuzzy. Bipolar fuzzy is a pair of member-
ship functions and non-membership functions, respectively represented by positive and
negative values. Bipolar fuzzy set is also applied in algebra, for example, in K-algebra.

K-algebra is a kind of an algebraic structure which is built by groups (G, *, e) with bi-
nary operations (®) and fulfilling the certain axioms and it is denoted by K = (G, %, ®, e).
This concept was discussed firstly by Dar and Akram [3], and they also discussed about
characterization of K-algebra as BCIl-algebra. The discussion was continued where Akram
and Dar [4,5] wrote about homomorphism in K-algebra and fuzzy ideals of K-algebra.
Along with the development of fuzzy set theory, Dar and Akram [5] discussed the bifuzzy
ideal of K-algebra, and bifuzzy is a pair of two fuzzy sets. Not only fuzzy theory, but also
bipolar fuzzy is applied to K-algebra. In 2010 Akram et al. [6] discussed the application
of bipolar fuzzy in K-algebra. Bipolar fuzzy set is not only applied in K-algebras, but
also in BCK/BCl-algebras, for example, Lee [7] discussed about bipolar fuzzy subalgebras
and bipolar fuzzy ideals of BCK/BCI-algebras.

Bipolar anti fuzzy is also applied in algebraic structure, for example, in group and
ring as follows. Muthuraj et al. [8-13] wrote some application of bipolar anti fuzzy in
HX group, subgroup, and ring. Hayat et al. [14] discussed some application of bipolar
anti fuzzy in hemirings. Motivated by Hayat et al.’s article about bipolar anti fuzzy, in
this paper we will introduce bipolar anti fuzzy ideal of K-algebra. In this research we
can expand the view about fuzzy theory and K-algebra. The remainder of this paper is
structured as follows. In Section 2 we present some basic theories about K-algebra and
fuzzy. In Section 3, we investigate bipolar anti fuzzy ideals of K-algebra and discuss its
properties. In Section 4, we characterize bipolar anti fuzzy ideal of K-algebras by means
of positive anti S-cut and negative anti a-cut. In the last section, we summarize the
conclusion and give advice on some topics for future work.
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2. Preliminaries. In this section we will discuss some basic theories about bipolar anti
fuzzy ideals of K-algebra. In the work of [3], discuss about K-algebra and we refer to
readers to point [4-7] for more result in this topic.

Definition 2.1. Let (G, %) be a group and its order more than 2. Define a binary operation
on G as follows
O:GxG—G
Oz, y) =r0y=xxy
If the following axioms are held by G:
L (tOy)OEo2)=(20((e0z)0(0y)) O
it xoy)=(0(e0y) O
w. rOr =e¢€
w. rOe=x
v. e ®x =x"! for every x,y,2 € G
then G is called K-algebra which is built by group G and we denote by KK = (G, *,®, e).
If (G, %, e) is an Abelian group, then we can replace axiom i and i with
Y (z0y) 002 =20y
0t ooy =y
for every x,y, z € G.

Definition 2.2. Let K = (G, *,®,¢e) be a K-algebra. A non empty set H in K is called
K-subalgebra if e € H and hy ® hy € H, for every hy,hy € H.

Definition 2.3. Let I be a non empty set in K-algebra KK = (G, *,®,e). I is called ideal
of I if the following conditions are satisfied for every x,y € G.

.ecl
i.xoOyel,yo(yor)el=zel

1

Definition 2.4. Let X be a non empty set and pa be a mapping
pa: X —[0,1]
where [0,1] is a closed interval between 0 and 1. Fuzzy set of A in X is defined by a set
A= {(z, pa(z)) |z € X}
where pa(x) is called a membership function for A.

Definition 2.5. Let K = (G, *,©,¢) be a K-algebra. A fuzzy set A of K is called fuzzy
tdeal of IC if the following conditions are satisfied for every x,y € G.

i. pra(e) > pa(z), and

. pra(x) = min{pa(z © y), paly © (y © 2))}-
Definition 2.6. Let X be a non empty set and N, and N\ be a mapping

A X = [0,1] and A5 : X — [-1,0]
where [0,1] is a closed interval between 0 and 1. [—1,0] is a closed interval between —1
and 0. A set B which is defined by
B = {z, (\5(z),\5(z)) |z € X}

is called bipolar fuzzy set B of X, where N5(x) is called a membership function for B and
Ag(x) is called a non-membership function for B. Furthermore, bipolar fuzzy set will be
written by B = (u*, pu™).

Definition 2.7. Bipolar fuzzy set B = (ut,u~) in K-algebra K is called bipolar fuzzy
subalgebra if it satisfies for every x,y € G.

i p(z ©y) > min {p"(z), ut (y)}
i. p=(z ®y) <max{u"(z), " (v)}
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3. Bipolar Anti Fuzzy Ideal of K-algebra. Before we discuss about bipolar anti
fuzzy ideal of K-algebra, firstly we defined about bipolar fuzzy ideal of K-algebras, which
is analog with the definition in [7] and [14].

Definition 3.1. Let B = (AT, A7) be a bipolar fuzzy set of K-algebra IC andt' = (t*,t7) €
(0,1] x [=1,0), for every x € K.

i. Blx) >t & (A (x), A\ (x) > (tT,t7) © AT (x) > tT and A~ (x) <t~

i. B(z) <t' & (A (2), A\ (2) < (tH,t7) & X (z) <tT and \~(z) >t~

Definition 3.2. Let B = (A", A7) be a bipolar fuzzy set of K-algebra KC with
tt, z==x
-+ . )
AT(e) = { 0, z#=x

_ t7, z==1x
Ale) = { 0, z#=x
Then B is called a bipolar value fuzzy point where t' = (t7,t7) € (0,1] x [-1,0) and
support x, written as xy = (mz“,mt_). xy 1s said to belong to B, written as xy € B if
B(z)>1t, so At(z) >tT, A\ (z) <t .
Definition 3.3. Let By = (AT,\7) and By = (u*, u~) be two bipolar fuzzy sets of K,
max{By, By} is defined as (max{\", "}, min{\~, u"})
min{ By, By} is defined as (min{\*, p"}, max{\~, p"})

Definition 3.4. A bipolar fuzzy set B = (AT, A7) is called a bipolar fuzzy ideal of K if
the following conditions hold.

i. At(e) > AT (x) and A~ (e) < A (x)
. A*()x))} > min{A(z0y), ATy (y© )} and A\~ (z) < max{A\ (zOy),\ (y© (y
Ox

Example 3.1. Let G = {e,a,b,x,y, 2z} and binary operation o in G is defined in Table 1.

TABLE 1. Binary operation o in GG

olelalblz|y]|z
elelalb|lx|y|z
ala|blelz|xl|y
blblelaly|z|x
rlx|ylzlelalb
ylylzlx|blela
zlz|lx|lylal|ble

We can prove that (G, o) is a group and K = (G,0,®, ) is a K-algebra. We defined a
bipolar fuzzy set B = (ut,u~) of K as follows p*(e) = 0.8, u™(t) = 0.06 for every t # e
and p~(e) = —0.7, u=(t) = —0.14 for every t # e. We can prove that B is a bipolar fuzzy
tdeal of K-algebra K.

Definition 3.5. Let I be a non empty subset in K-algebra K. Bipolar fuzzy set Cre =
(Cf,Cr) defined by
0, zel
+ . 1)
cio={ 1§,

_ 0, =zel
crte)={ % 1]

15 called bipolar-valued anti characteristic function.
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Motivated by Definition 3.2, we will discuss about bipolar anti fuzzy, where x; is said
not to belong to B, written as 2y € B if B(x) </, so AT (z) <tF, X\~ (x) >t~
Definition 3.6. Let K = (G,*,®,¢) be a K-algebra. Bipolar fuzzy set B = (AT, \7) is
said a bipolar anti fuzzy ideal of IC if the following conditions hold.

1. ZL’t/EB = 6t/@B

2. (ZE © y)t/ € B, (y ®© (y © l‘))r’ EB= Tmax{t' '} €EB
Furthermore, bipolar anti fuzzy ideal is abbreviated by BAF ideal.

Theorem 3.1. If B is a bipolar fuzzy set in K-algebra IC, then axioms in Definition 3.6
are equivalent to the following axioms respectively.

a. \T(e) < At(z) and A~ (e) > A\~ (x)
b. )\+().:1;)} <max{AT(z oy, AN (yo(yox))} and A\~ (z) > min{A\ (z ©y), A\ (y © (y
Oz

Proof: Based on Definition 3.2 and definition of xy€B, we can prove that the axioms
are equivalent.

Example 3.2. Let K = (G,0,©®, ¢e) be a K-algebra where G = {e,a,b,z,y, z}. If a bipolar
fuzzy set B = (AT, A7) in K defined by

0.03, z=e¢ _ —0.2, x=e
AT(@) :{ 04, z4e MIA () :{ —0.35, z#e

then B = (A", A7) BAF ideal of K.

Theorem 3.2. A bipolar fuzzy set B = (A", A7) is a BAF ideal of K-algebra K if and
only if

a. \T(e) < At(z) and A~ (e) > A\ (x)
b. A+()96))} < max {AT(z 0 y), AT (y © (y ©2))} and A™(r) = min{A"(z ©y), A" (y © (y
Oz

Proof: Because axioms in Definition 3.6 are equivalent to axioms in Theorem 3.1, this
theorem has been proven.

Theorem 3.3. Let K = (G, *,®,¢) be a K-algebra and I C K in which I # (. Cje €
BAF ideal of IC if and only if I ideal of KC.

Proof: It is clear that e € I and for every (x®y) € I, (y® (y©x)) € I implies z € I.
So, it can be concluded that I ideal of K. Conversely,

i. We know that C}.(e) = 0 and Cp.(e) = 0. Cpe = (Cj, Cf.) where

0, xel
ci={ 1 1E]

_ 0, =xzel
cr={ %, T
s0 0 < Cfi(z) = Cf(e) < Cfi(x) and 0 > Cr(z) = Cro(e) > Cr(x).
ii. We know that [ ideal of I, then the following axioms hold
(xoy)eland (yo (yox)) €l — €I, cause

Cl(zroy) =0 Cr(zoy) =

Chlyo(yor) =0 Cr(yo(yor)) =0

Cle(r) =0 Cre(x) =

Or can be written as x €1 — (z ©y) €I and (y © (y © z)) €I, cause
Cllzroy) =1 Cr(zoy) =—1

Cryoyor)=1  Crlyoyor)=-1

Cre(r) =1 Cre(z) = -1

We can see relation between x and = © y, as follows
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e x €] and (r®y) € I then
Cli(z) = Cfl(r ©y) and Cp(z) = Cp

e z €] and (xr®y) €I then
Cle(z) < Cre(z ©y) and Cre(z) = Cre(z O y)

e r€l — (xr®y)E then
CH(x) = C:(v © y) and Cr(z) = Cralz 1)

Generally, it can be written as C}.(z) < Cli(x © y) and Cj.(z) > Cr.(z © y).

We can see relation between x and y ® (y ® z), as follows

erxeland (y© (yo®x)) €I then
Cre(z) = Cr(y © (y ©x)) and Cp(r) = Cr(y © (y © 2))

ereland (y© (y®x))EI then
Cli(z) < Cle(y© (y© ) and Cre(z) > Cr(y © (y © x))

e x€] = (y© (y©®x))€EI then
Cre(z) = Ce(y © (y © 7)) and Cre(z) = Cre(y © (y © )

Generally, it can be written as C/.(z) < Cl(y© (y©x)) and Cr(z) > Cr.(y© (y©

According to the statement above

o Cr(z) < Cli(z ©y) and Cfi(x) < Cli(y © (y © ) so Cfe(x) < max{Cf(z ©
Y),Crely© (y© )}

¢ Cre(r) > Cr(r©y) and Cr(z) = Cr(y © (y © 2)) so Cpe(z) = min{C(x
), Creyo o)}

Cre € BAF ideal of K.

(r©y)

4. Characterization of BAF Ideal of K-algebras by Means of Positive Anti
B-cut and Negative Anti a-cut.

Definition 4.1. Let K = (G, x,®, e) be a K-algebra. If B = (u™, u~) bipolar fuzzy set of
K and (o, B) € [-1,0] x [0,1], then

i BJr {z € K|pT(x) < B} is called positive anti B-cut of B

. Ba ={z € K| (x) > a} is called negative anti c-cut of B

. Bag = {r € Klp~(x) > a and p*(z) < B} is called anti (o, B)-cut of B
For every v € (0,1] and Bj N B; is called anti vy-cut of B.

Theorem 4.1. Bipolar fuzzy set B = (u*,u~) € BAF ideal of K-algebra K if and only
iof the conditions hold.

i. For every B € [0, 1], ]3’; non empty, then Bg ideal of K
ii. For every a € [—1,0], B non empty, then By ideal of K

Proof:

i. Let z € B:{ — pt(x) < . We know that pt(e) < pt(x) then pt(e) < 5. So we can
conclude that e € By. Let € By — p~(z) > o. We know that p~(e) > p~ () then
p=(e) >a. Soee€ B,. i i

ii. Suppose that (z®y), (y© (y©x)) € By and 2 € By, then u* (x) > o0 f < pF(z) <

max{p " (z©y), p (y© (yo )}t It causes p(zOy) > fand p*(y© (y©z)) > B s
(z@y), (y©(y©x)) € B . It is contrary with presupposition, and it must be z € Bj.

In the same way for u~ (), we can conclude that (z ©y), (y© (y© 1)) € B implies
x € B,.

Bg and B ideal of K. Conversely,

i. For z € BE and z € B, then pt(z) < f and () > a. As we know that for every
reG—ec Bg and e € B; hold pt(e) < 8 and p(e) > a.
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Suppose that pt(e) > pt(z) and p*(x) = S then put(e) > 5. It is contrary with
pt(e) < B. It must be pt(e) < pt(z).

In the same way we obtain that p=(e) > u~(x).

i. If (zoy), yo(yox)) € B;f then x € BE It causes pt(z) < 3, pt(z ©y) < S, and

pr(y©(yox)) < B. Suppose pt(x) > pt(z©y) and p*(z©y) = B then u*(z) > B.

It is contrary to p*(x) < 3, and it must be p*(z) < put(x

Suppose pf(z) > p(y © (y© x)) and p*(y © (y © x)) =
contrary with u*(z) <, and it must be pu(x) < ut(y © (y

Based on the statement above, we obtained that u™(z)
pt(r) < pty® (y ©x)) < B. It can be concluded that
yutyo o)y

In the same way for B
p(y o (y ©x)).

Based on the statement above, we obtained p~(x) > p~ (r ®y) > « and pu~(z) >
u (y© (y©®x)) > a. It can be concluded that p~(z) > min{u (x ©y),n (y © (y
o)}

B = (u", ) € BAF ideal of K-algebra K.

iz ©y) < B and
T(z) < max{put(z ©

o)

until we obtained p=(z) > p (z ©® y) and pu (z) >

Example 4.1. According to Example 3.1, we have K = (G,0,®, €) is a K-algebra where
G ={e,a,b,x,y,2} and B = (\T,\7) is BAF ideal of KC, defined by

i ] 003, z=e¢ _ ) =02, =z=e
A (x)—{ 04, xz#e and A () = —0.35, x#e
If (a, B) = (—0.45,0.5) then EZ{ = {z € K|\ (2) < B} = {e,a,b,z,y,2} and B, =
{r e KA (z) > a} ={e,a,b,x,y, 2}. B;{ and B ideal of K.

Corollary 4.1. Let K = (G, *,®,e) be a K-algebra and B = (u*, u™) is bipolar fuzzy set
of K. If B= (u", ") element BAF ideal of K, then anti vy-cut of B ideal of K for every
v € 10,1].

Proof:

i. Let x element anti y-cut, so u*(x) <~ and p~ () > —v. Because pu*(e) < p*(x) and
p(e) = p~(z), it causes p*(e) < p*(x) <vand p=(e) > p~(z) = —. So uF(e) < v
and p~(e) > —y — e element anti y-cut of B.

ii. Suppose that (x ®y) element anti y-cut, (y © (y © z)) element anti y-cut and z is not
an element of anti v-cut, implies
pH(zoy) <vyand p(zoy) > —y
pryo(yor) <yand p (yo (yo ) > —
pt(z) >y and p~ () < —y
It is contrary with axioms BAF ideal of K, and it must be z element anti vy-cut. It
can be concluded that (x ® y) element anti vy-cut, (y ® (y ® x)) element anti y-cut
— x element anti vy-cut.

It is proven that anti y-cut ideal of K.

Example 4.2. Based on Example 3.2, we know that K = (G, 0, ®, €) is a K-algebra where
G ={e,a,b,x,y,z} and B = (AT,\7) BAF ideal of K, where

0.03, z=e —-0.2, x=e
o) — , (1) = ’
A (x)—{ 04, wzH#e and A (1‘)—{ —0.35, z#e
If v = 0.4 then B;r = {e,a,b,x,y,z} and B; = {e,a,b,x,y,z}, anti y-cut of B is
B;’ HB; ={e,a,b,x,y,z}.

1. e € anti y-cut
ii. For every x,y € G, (x®y) € anti y-cut, (y©® (y©Ox)) € anti y-cut — x € anti y-cut.
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It is proven that anti v-cut ideal of K.

Corollary 4.2. If bipolar fuzzy set B = (ut, =) € BAF ideal of K-algebra IC, then B(aﬁ)
ideal of IC for every (o, B) € [—1,0] x [0, 1].

Proof: Based on the proof in Theorem 4.1, it is clear that B(aﬁ) ideal of K.

5. Conclusion. In this paper, we introduced the concept of bipolar anti fuzzy ideals of
K-algebra and investigated related properties. We hope this discussion can expand the
view about fuzzy theory and become a reference for further research, for example, BAF
bi-ideals.
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