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Abstract. For damage detection, this research article discusses an easy-to-compute
damage index derived from the governing dynamic of the structure that has potential
practical application in Structural Health Monitoring (SHM). We use simplified struc-
tural models to explore the sensitivity of the index to damages, to compare the index
performance with a traditional but popular damage detection method, and to understand
the local/global predictive capability of the index. We use two simple models, namely,
single- and two-degree-of-freedom systems. The results suggest that the damage index is
local, that can only monitor damages occurring near the points of measurements, but it
is sensitive to damages, unlike the natural frequency, which is global but less sensitive.
Keywords: Structural health monitoring, General vibration model, Power Spectral
Density, Damage index

1. Introduction. Determining features of engineering structures that are sensitive to
structural damages has become a very active research topic in the area of Structural
Health Monitoring (SHM). The features are commonly extracted or derived from the
structural deformation or rate of deformation data. The most widely used features are the
structural natural frequencies, mode shapes, deformation curvatures, the Power Spectral
Density (z and F statistics), and other features derived from those quantities [1, 2].

The natural frequency and mode shape are advantageous and practical for damage
detection. The quantities can be estimated from data obtained at a few measurement
points and are theoretically capable of changing with damages that occur on any part of
the structure. The quantities are global. Our understanding of the quantities and their
measurement methods are well established. With those characteristics, the quantities are
widely used for damage detections.

During the last decade, we witness the proliferation of the use of machine learning or
soft computing techniques for SHM applications. The machine learning techniques are
often used in conjunction with those damage sensitive features as the input data [3, 4, 5].
However, we also witness the use of the techniques with raw data directly measured from
the structural deformation. In this approach, the features are not explicitly derived but
are established as an integral part of the techniques [6, 7]. For example, [7] developed a
convolution neural network model that classified the conditions of an engineering structure
into healthy and damaged based on the acceleration data recorded on many points on the
structure.

In terms of the computational complexity, the traditional methods that use the struc-
tural vibration characteristics are simpler. The modern methods based on machine learn-
ing techniques tend to require a large amount of data and much higher computational
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complexity. Gunawan et al. [8] pointed out that the machine learning approach was only
effective when the training data were available in a significant number.
The traditional methods can achieve high accuracy by applying our theoretical under-

standing of structural mechanics. Many recent publications proposed detection methods
solely based on correlations of the patterns in the data without exploiting much these
understandings [3, 5, 6, 7].
However, recently, Zhang et al. [9] discussed a new method, called the general vibration

model, where the damage was detected by evaluating the deviation of the structural
dynamic equilibrium from the dynamic on the healthy condition. The method was verified
experimentally. Some aspects, such as the sensitivity of the method to the damage level
had not been discussed and how better or worse the performance of the method was with
respect to the traditional methods, had not been addressed. This article intends to fill
this gap.
Thus, the contributions of this research are of the following. The first is to present the

sensitivity of the damage index of the general vibration method to the damage level. The
second is to compare the sensitivity of the damage index with the traditional and widely
used damage sensitive features. The third is to identify the local/global damage detection
capability of the index.
The article is structured as the following. Section 2, Research Methods, discusses the

mathematical models of the structural dynamics and its numerical solution. Section 3,
Results, discusses the effects of the damage level to the current damage index, and a com-
parison to the traditional methods. Finally, Section 4, Conclusions, presents a summary
of the current findings and a proposal for the future investigation.

2. Research Methods. The governing dynamic of the system consisting of N lumped
masses can be obtained by applying the Newton’s second law to each mass. The results
are the dynamic equilibrium equation of:

Mü(t) +Cu̇(t) +Ku(t) = f(t), (1)

where u(t), u̇(t), and ü(t), respectively, are column-wise vectors of displacements, veloci-
ties, and accelerations. All vectors have the same size of N×1. Respectively, the symbols
of M, C, and K denote the mass, damping, and stiffness matrices. All matrices have the
size of N ×N .
We define a damage index, d, as

d(t) = |Mü(t) +Cu̇(t) +Ku(t)− f(t)|, (2)

where M, C, and K are structural properties in the intact or healthy condition. Theo-
retically, the damage index should be zero when the structural responses, u(t), u̇(t), and
ü(t), are obtained from the healthy condition. In the other condition where the structure
contains damages, the index is expected to deviate from zero. We also hypothesize that
the value of the index will proportionally be with the damage level. This study intends
to establish evidences to support these hypotheses.

2.1. Numerical integration. We solve Equation (1) numerically for a general struc-
tural condition. Firstly, we rewrite the governing dynamic in the state-space form by
introducing a new free variable:

x(t) =

[
u(t)
u̇(t)

]
.

By this introduction, we can express Equation (1) in the form of the standard initial value
problem:

ẋ(t) = F(t,x(t)), x(0) = x0 =
[
u0 v0

]T
, (3)
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where

F(t,x(t)) = Ax(t) + p(t), (4)

A =

[
0N×N IN×N

−M−1K −M−1C

]
, (5)

p(t) =

[
0N×1

M−1f(t)

]
. (6)

In Equations (5) and (6), 0N×N is a zero matrix with the size N ×N , IN×N is an identity
matrix of the same size, and 0N×1 is a zero vector of the size N × 1.

The problem of Equation (3) is solved by using the higher-order Runge-Kutta method
where the data of the initial structural conditions x0 are propagated through the time
domain by a successive computation of

xi+1 = xi +
1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) ·∆t, (7)

where

k1 = F (ti,xi) (8)

k2 = F

(
ti +

∆t

4
,xi +

k1∆t

4

)
(9)

k3 = F

(
ti +

∆t

4
,xi +

k1∆t

8
+

k2∆t

8

)
(10)

k4 = F

(
ti +

∆t

2
,xi −

k2∆t

2
+ k3∆t

)
(11)

k5 = F

(
ti +

3∆t

4
,xi +

3k1∆t

16
+

9k4∆t

16

)
(12)

k6 = F

(
ti +∆t,xi −

3k1∆t

7
+

2k2∆t

7
+

12k3∆t

7
− 12k4∆t

7
+

8k5∆t

7

)
(13)

The symbol xi denotes the structural deformation at ti. We start the computation from
i = 0 and increasing successively to i = 1, 2, . . .. The variable ∆t denotes the time step
whose value should be very small for the Runge-Kutta method to estimate the structural
dynamic responses accurately. The computation of the recursive formula Equation (7)
should be repeated until the final time is reached.

2.2. Single-degree-of-freedom system. For the case of the single-degree-of-freedom
(SDOF) system without damping, the governing dynamic can be written as:

mü(t) + ku(t) = p0 sin(Ωt), (14)

where p0 sin(Ωt) is a harmonic forcing function. To the zero initial velocity and position,
the system responds with

u(t) = U sin(Ωt)− UΩ

ωn

sin(ωnt), (15)

v(t) = UΩcos(Ωt)− UΩcos(ωnt), and (16)

a(t) = −UΩ2 sin(Ωt) + UΩωn sin(ωnt), (17)

where U = p0/(k −mΩ2), and ω2
n = k/m is the natural frequency. The displacement, in

the frequency domain, can be obtained by applying the Fourier transform, resulting in:

U(ω) = U

√
2π

2ȷ
[δ(ω + Ω) + δ(ω − Ω)] +

UΩ

ωn

√
2π

2ȷ
[δ(ω + ωn) + δ(ω − ωn)] . (18)
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The frequency response can also be expressed in the form of the Power Spectral Density
(PSD):

Suu(ω) = |U(ω)|2, (19)

from which, the F statistic for SHM application can be established:

F (ω) =
SH
uu(ω)

SU
uu(ω)

. (20)

The superscript H denotes the healthy structural condition and U denotes the unknown
condition. Theoretically, the value of F statistic is one for the intact condition.
For the damaged condition, we reduce the spring stiffness k by a factor determined by

the damage level α. The healthy condition is associated with α = 0. The damage index
of α = 1 means the condition of complete structural failure.

2.3. Two-degree-of-freedom system. In addition to the previous SDOF system, we
also study the applicability of the general vibration method in the context of two-degree-
of-freedom (2-DOF) system. The model allows to study the method on more complex
scenarios. The model is depicted in Figure 1.

Figure 1. A model of two-degree-of-freedom system with the masses m1

and m2, the springs with the stiffnesses k1, k2, and k3, and the applied
dynamic forces f1(t) and f2(t). The left and right ends of the model are
fixed.

For the system, the stiffness, damping, and mass matrices, respectively, are:

K =

[
k1 + k2 −k2
−k2 k2 + k3

]
, C =

[
0 0
0 0

]
, and M =

[
m1 0
0 m2

]
. (21)

The applied dynamic forces are f1(t) on Mass 1 and f2(t) on Mass 2.

3. Results. We start the discussion from the case of the SDOF system, and then, it is
followed by the 2-DOF system. As for the first case, the model parameters are m = 1, k
= 1, Ω = 0.25, and p0 = 1 (see Section 2.2). All are in their respective units. We analyze
the responses for various damage levels from 0 up to 20% or 0.2 in 30 increments. The
model is analyzed for 4096 s with the time step of 0.25 s.
First, we present the displacement-time histories for a few damage levels in Figure 2. It

suggests that it is rather difficult to conclude the structural condition from the response
data as the change of the structural integrity does not change the displacement-time
history remarkably and consistently. The displacement peak around 80 s increases with
the damage level. However, at around 70 s, the peak decreases. It is challenging to notice
the occurrence of the damage from the displacement time history.
Unlike the displacement time history, the phase plot, where the displacement time

history is plotted against the velocity time history, is seriously altered by the damage as
shown in Figure 3. For clarity, the figure only shows the conditions without damage and
with damage at the level of 0.05517. The time duration is also fixed shortly for a duration
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Figure 2. The effects of the damage to the displacement of the mass of
the single-degree-of-freedom system

Figure 3. The phase plot of the single-degree-of-freedom system on the
healthy and damaged conditions

of 100 s. Higher deviation from the healthy condition exists for a longer time. This finding
seems to suggest that the similarity of the phase plot with the healthy condition may
be an indicator of structural integrity. However, this assessment still requires further
studies by taking into account of the variation of the applied loads and the change of the
environmental factors.

Figure 4 shows how the damage alters the displacement time history and the phase
plot. In this case, the damage is initiated at the time of 25 s from the initial condition.
The figure signifies the previous finding that the change of the response trajectory due to
the damage is more visible in the phase plot. The damage level is 0.05517.

The damage index, computed by Equation (2), is also seriously affected by the damage
level. Figure 5 shows the evolution of the damage index for the three damage levels,
namely, 0.01379, 0.02759, and 0.05517. We note that on the healthy condition, the value
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Figure 4. The effect of the damage initiation to the displacement history
and the phase plot. The damaged case is at the level 0.05517.

Figure 5. The time history of the damage indexes for three damage levels.
On the healthy condition, the value of the damage index is zero.

of the index is constant at zero. The damage index seems to be periodical, suggesting
that the damage severely affects the structural responses at a certain time, but it may
not be observable for other time. It suggests that for practical applications, the damage
index should be observed continuously through time.
In Figure 6, we show the effects of the damage level to the three damage sensitive

features. The two of them, namely the change of the natural frequency and the Power
Spectral Density method (F statistic), are traditional and were discussed in a great length
in many references, for example, [10, 11, 12, 13]. As the damage index varies with time,
only the maximum damage index is selected for each damage case. As the F statistic
varies with the frequency, only the maximum F statistic is selected for each damage case.
Generally, we find that the three damage features are related linearly to the damage

level. The fitness to the linear model is at the R2 statistic, called the coefficient of
determination representing the fitness of the model to the data, exceeding 0.99. We note
that R2 = 1 indicating a perfect fitness. For this particular case, the rate of change of the
F statistic with the damage level is the highest, followed by the damage index, and the
change of the natural frequency. It suggests that the F statistic is the most sensitive to
the damage, closely followed by the damage index.
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Figure 6. For the case of the one-degree-of-freedom system, the effects of
the spring damage to the chance of the natural frequencies, in percent, the
damage index, and the F statistics

Figure 7. The three scenarios of the spring damages and their effects to
the damage index and change in the natural frequencies. The damaged
springs are in broken line.

Now, we shift our discussion to the case of 2-DOF system with k1 = 1, k2 = 2, k3 = 3,
m1 = 1, m2 = 1, f1(t) = 0, and f2(t) = sin(0.25t). We study three damage scenarios that
occur on each spring separately. In Figure 7, the damaged spring is printed with a broken
line. Similar to the previous case, we observe the damage index computed on each mass
as the damage grows. The conclusions are of the following.

The change of the natural frequencies, ∆ωn, which are marked with the symbol ‘7’, is
always affected by the damages on Spring 1, Spring 2, or Spring 3. On the left panel of
the figure, the damage on Spring 1 strongly affects the change of the natural frequency
associated with the first mode, but it weakly affects the second mode. When the second
spring has damaged, it affects severely the second vibration mode, as well as the first
mode. As for the last scenario, the damage on the third spring, it affects both frequency
modes nearly equally.

In the other side, the damage index computed on a mass is only affected by the damaged
spring directly connected to the mass. When the damage occurs on Spring 1, which is
connected to Mass 1, it affects the damage index computed on Mass 1. The value of the
damage index on the Mass 2 is entirely unaffected. In addition, the damage that occurs
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on Spring 2, which is connecting Mass 1 and Mass 2, affects the damage indexes computed
on both masses with the same magnitude. Finally, the damage on spring 3 only affects
the damage index computed on the second mass.
The fact illustrates the well-known understanding that natural frequency is global in

nature. Generally speaking, the damages on any part of the structure affect the natural
frequencies. From this study, we conclude that the damage index, derived from the general
vibration model, is local in nature. The index is only affected by the local damage. In
terms of sensitivity to the damage level, the damage index is potentially more sensitive
than the natural frequency.

4. Conclusions. Finding damage sensitive features is one of the research endeavors in
the area of structural health monitoring. Recently, we encounter a proposal of the damage
index [9] that is essentially describing the deviation of the dynamic equation from an
equilibrium condition when the deformation data are obtained from non-intact structural
conditions. In this study, we evaluate the sensitivity of the index with respect to the
structural damages. We also compare other damage sensitive features, namely, the change
of the natural frequencies and the F statistics. Our finding suggests the damage index is
local in nature that is only sensitive to the damage that occurs near or at the point of
measurement, unlike the change of the natural frequencies which is global. However, the
damage index has the potential as it is very sensitive to damages. Based on the facts, we
recommend the use of the damage index in conjunction with the traditional methods.
As for future research, the dynamic equilibrium of many structural elements can be

compactly presented in the frequency domain for many conditions. Establishing the
damage index in the domain may be simpler and more useful. Investigating the index in
the frequency domain may be interesting for future research.
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