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Abstract. Modern networks are growing increasingly complex, and various network
faults occur inevitably. Recently, researchers have proposed solutions to generate test
packets to test network data plane. However, they either take very long time to generate
test packets or suffer poor coverage for data plane. In this letter, we propose a new test
packet generation framework named NetGen. It can generate test packets for entire data
plane in a very short time. In addition, it supports real-time test packets update in an
incremental way. We evaluate NetGen using actual networks, and the evaluation shows
it accelerates test packet generation by an order of magnitude compared with state-of-the-
art tools.
Keywords: Network data plane, Formal methods, Incremental test packet update

1. Introduction. Network faults (e.g., configuration errors, software errors in devices
and broken interfaces) can lead to network outages. These network outages can compro-
mise availability, security, and performance of the network. Thus, network users usually
need to ensure the correct behavior of their networks by systematically reasoning about
the networks, which has inspired the field of network verification and network testing.
Towards reliable network, researches have recently proposed a series of network verifica-
tion and testing tools. Control plane verification tools are proposed to check network
properties by inspecting configuration files [1, 2]. However, these tools can only check the
bugs or errors in configuration files. Software errors in devices and broken interfaces are
out of their scope of work. An increasing number of data plane verification tools, like
Configchecker [3], and Delta-net [4], check whether forwarding information bases (FIBs)
violate generic network reachability properties based on formal methods (e.g., SAT Solver,
and Datalog Solver). These approaches [5, 6] can detect network errors which impact
FIBs’ generation (e.g., configurations errors). However, faults in actual implementation
of data plane, like mislabeled cables and crashed devices, still cannot be detected by
these approaches. While, according to the survey conducted by North American Network
Operators’ Group, network faults in actual implementation of data plane are a leading
cause of network misbehave [7]. To detect these faults, network users always require to
ensure that each interface in data plane executes correctly. With primordial tools (e.g.,
ping, and traceroute), they have to execute the command thousands times. For each run,
users can only analyze whether a single given packet reaches its destination. Some data
plane testing works, like RuleScope [8], are proposed to check whether forwarding rules
are correctly installed in a switch. However, they are designed to generate one probe for
each rule. These tools will generate too many probes, and hurt regular traffic. Tools, like
ATPG [7] and Pronto [9], generate test packets to exercise every rule and link based on
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FIBs. However, either of them can generate or update test packets in a short time. ATPG
[7] even takes thousands of seconds to generate test packets for even a campus network.
To address above problems, we develop a new framework, NetGen, to detect the errors

of actual implementation of data plane. For saving bandwidth, it generates the minimum
number of test packets that travel every possible forwarding rule and port, so that any
fault will be observed by at least one test packet. In actual networks, forwarding rules
may undergo updates frequently, as users always need to deploy new policies (e.g., traffic
engineering) [10]. It is rather time-consuming to regenerate test packets. With novel
algorithms, NetGen can efficiently update test packets to handle FIBs changes in an
incremental way.
The state-of-the-art data plane testing tools, like ATPG [7] and Pronto [9], can generate

test packets to cover all forwarding rules. Compared with them, our novel test packet
generation framework avoids redundant calculations of FIBs, which can accelerate the
test packets generation. In addition, ATPG can only work for static FIBs, which limits
its application in real networks. In contrast, our tool supports FIBs updates by updating
test packets. To the best of our knowledge, NetGen is the first data plane testing tool
that can update test packets in real time.
The remainder of this paper is organized as follows. We provide the formal definition of

the research problem in Section 2. Section 3 provides an overview of our framework, and
then the details of the approach are introduced. In Section 4, we present the evaluation
results of our approach compared with state-of-the-art methods. Finally, we present
concluding remarks in Section 5.

2. Problem Statement.

2.1. Forwarding basics. Rule: Each rule r is a tuple < rv, p >, where rv is a bit-
vector to encode matching conditions (using 1, 0 and ⋆), and p refers to an output
port. rv models a range of IP address. For example, 10.0.1.0/24 corresponds to an
rv 00001010 00000000 00000001 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆.
Device: Each device (e.g., switch, and router) R contains a set of forwarding rules (e.g.,

FIBs) r1, r2, r3, . . . , rn. A packet header h, which is a bit-vector, matches rule rj, if each
of the vectors rv1, rv2, rv3, . . . , rvj−1 contains a conflicting bit, whereas rvj has no such
conflicting bit. The matching condition for rule rj can be defined by the Boolean function
representing the set of bit-vectors rvj\{rv1, rv2, . . . , rvj−1}1 . A packet with the header h
is forwarded to the port defined in the rule rj, only when h is evaluated to true by the
matching Boolean function of rule rj.
Network : A network N consists of a set of devices R1, R2, R3, . . . , Rn. Device Ri con-

tains the list of ports p1i , p
2
i , p

3
i , . . . , p

n
i , where n is the number of ports. The link from

port plj to its adjacent port pki can be denoted as a tuple < pki , p
l
j >.

2.2. Forwarding faults. The problem in this letter is to reveal all the forwarding faults
of the rules and links in network N . We tackle the problem by generating test packets to
systematically exercise all rules or links. A fault happens to a rule rj in device R, for any
packet with the header h satisfies matching condition for rule rj, the device processes h
without forwarding to the port defined in the rule rj. A fault happens to a link < pki , p

l
j >,

if packet with header h is forwarded by the port pki but port p
l
j does not receive any packet

with the header h.
To check whether a rule r is correct, the test packet h should satisfy the rule’s Boolean

match condition. It is equivalent to verifying whether assignments make a Conjunction
Normal Form (CNF) true. Therefore, rule-forwarding fault probe generation is in NP-
complete. Link-forwarding fault probe generation is similarly handled.

1For example, the 1 ⋆ ⋆\{110, 101} encodes the set {111, 100}.
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3. NetGen Overview. Figure 1 shows the work flow of NetGen. First, it collects FIBs
from the devices in the network. By computing reachability-to-rules table, it generates
the minimal test packets which can exercise every rule and link. Then, via an agent,
it requests terminals to send test packets. If the destination host or switch receives the
packets, it confirms the monitor that these exercised rules and links work correctly ( 1⃝- 4⃝
in the figure). To make sure the test packets can work for the changed forwarding rules,
it updates reachability-to-rules table and test packets incrementally ( 5⃝- 7⃝ in the figure).

3.1. Test packets generation. The test packet generation mainly consists of construct-
ing reachability-to-rules table and selecting test packets. Table 1 shows an example table
for the toy network in Figure 2. r11 denotes that packets with the header representing
10.0.1/24 (0000101 0 00000000 000 00001 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆) are forwarded to port p11. Other
rules are similarly defined. For each entry in Table 1, any packet with the header (i.e.,
the 6th column) can cover all rules (i.e., the 4th column) and links (i.e., the 5th column)
associated with that entry. For example, entry 1 refers to that packets with the head-
er whose destination is 10.0.1/24 can be forwarded to exercise rules {r11, r22} and links
{< p0A, p

0
1 >,< p11, p

0
2 >,< p12, p

0
B >}.

Figure 1. High level image of NetGen. S: Switch.

Table 1. Reachability-to-rules table for the network in Figure 2

Entry# Ingress Egress Rules Links Header

1 pA0 pB0 r11, r22
< p0A, p

0
1 > < p11, p

0
2 >

< p12, p
0
B >

dst = 10.0.1/24

2 pB0 pA0 r21, r12
< p0B, p

1
2 > < p02, p

1
1 >

< p01, p
0
A >

dst = 10.0.2/24

· · · · · · · · · · · · · · · · · ·

Figure 2. An example network
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3.1.1. Constructing maps for rules in each device. To construct Table 1, we need to reason
about how packets are processed in the network. As a rule in each device is a tuple
< rv, p > which maps bit-vector to output ports, it is rather time-consuming (like ATPG
[7]) to compute packet forwarding with these bit-vectors. To speed up the computation,
we convert rules in each device to a map from labels of disjoint difference normal form
(ddNF) to output ports [11]. A ddNF is constructed as a directed acyclic graph, a four-
tuple < N,E, l, root > where N are nodes, E ∈ N ×N are edges, l is a labeling function
which maps each node to a bit-vector, and root r is a root node l(root) = ⋆ ⋆ ⋆k. For two
nodes n,m ∈ N , if E(n,m), then l(m) ⊂ l(n). Figure 3 shows an example ddNF. The top
most node denotes the ⋆⋆⋆\{⋆1⋆, 1⋆⋆}, the left-most node ⋆⋆⋆\11⋆, and the bottom node
denotes 11⋆. Now, with ddNF, the same process can be used to compute reachability, but
this time we use lists of labels instead of wildcard matching and intersection.

Figure 3. An example ddNF

The computation of the label-to-port map in Algorithm 1 follows algorithms in [11].
Whereas, for the test packets generation, we also provide how to construct the port-
to-label map and the rule-index-to-label map for the rules in each device. The inputs
are Devices that refer to the rules of the devices in the network. First, we compute a
map rv2node from bit-vectors to labels, and a map node2rv from labels to bit-vectors by
constructing a ddNF (line 2). Then, to extract labels of ddNF for each rule, we subtract
previously labels by computing DC(rv2node[rv])\seen, where seen are the nodes that
have been used (lines 3-8). S[p] refers to the map from ports to labels and H[index(rv, p)]
is a map from the rule index to labels (line 9).

Algorithm 1 Constructing maps for rules in devices

1: procedure ConstructMaps(Devices)
2: rv2node, node2rv ← constructDdnf(Devices)
3: for R ∈ Device do
4: for < rv, p >∈ R do
5: labels← DC(rv2node[rv])\seen
6: for l ∈ labels do
7: R

′
[l]← p

8: end for
9: S[p], H[index(rv, p)]← labels
10: seen← seen ∪DC(rv2node[rv])
11: end for
12: end for
13: return S,H
14: end procedure
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3.1.2. Constructing reachability-to-rules table. The inputs of Algorithm 2 are the output
maps from Algorithm 1 and topology. For each port, we compute the reachable packets
from it to all other ports in the network by the travelNet procedure (lines 3-5). Label
la corresponds to the set of all packets at p, and ru refers to the exercised rules (line 4).
In travelNet, when packets arrive at a port, the device dev that contains the input port
is applied to these packets by devForw, producing a list of new packets (lines 11-12). If
packets reach the edge, a corresponding entry is recorded in reachability-to-rules table
(lines 14-15). Otherwise, we invoke the device containing the new port (line 16). We will
repeat the previous process until the packet is no longer able to reach any other ports. In
devForw procedure, for each port that is not equal to inport inp on the device, we intersect
labels la with the labels of that port S[p] (line 23). For each rule in the rules which guard
that port, if its corresponding labels are intersected with la, the rule is exercised by the
packets. Then we can get the history rules exercised along the forwarding path (lines
24-28). When the travelNet procedure completes, we can get the reachability-to-rules
table (line 6).

Algorithm 2 Generating test packets

1: procedure GenerateProbes(S, H, topo)
2: table← ϕ
3: for protp ∈ ports do
4: travelNet(initVar (p, la, ru), topo)
5: end for
6: tps← minSetCover(table)
7: return table, tps
8: end procedure
9: procedure TravelNET(in, topo)
10: for inf [i] ∈ inf do
11: dev = findDev (in[i].p, topo)
12: t← devForw(dev, in[i].p, in[i].la, in[i].ru)
13: for t[i] ∈ t do
14: if t[i].p ∈ edgeports then
15: table← addEntry(in[i].p, t[i].p, t[i])
16: else travelNet(t, topo)
17: end if
18: end for
19: end for
20: end procedure
21: procedure devForw(dev, inp, la, ru)
22: for port p ∈ getPorts(dev) do
23: la← la ∩ S[p]
24: for r ∈ getRules (p) do
25: if H[index(r)] ∩ la ̸= ϕ then
26: ru← update(ru, r)
27: end if
28: end for
29: tmp[p]← record(p, la, ru)
30: end for
31: return tmp
32: end procedure
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3.1.3. Selecting test packets. For each entry, a packet with the header (i.e., the 6th col-
umn) can exercise all links and rules in the entry. A rule may appear in more than one
entry. We select a minimum of test packets tps to exercise all rules (line 6). Test packets
to cover all forwarding links can be similarly computed. The algorithm follows the greedy
Min-Set-Cover algorithm. The greedy algorithm guarantees to find a cover which is at
most a logarithmic factor 1 + ln(n) (n is the number of entries) larger than the optimal
solution [12].

3.2. Test packets update. NetGen provides an incremental test packets update ap-
proach to make sure test packets can still cover all links and rules including added, re-
moved and modified ones.

3.2.1. Updating reachability-to-rules table. In Algorithm 3, the inputs are the original
reachability-to-rules table, and the original ddNF , the rules in Devices ′, and the changed
topology topo ′. First, we update the labels of ddNF to reflect the changed rules (line 2).
Then, we recompute the label-to-port map S ′[p] with ddNF ′ (line 3). To update the table,
we compute the ports pt which are tagged different labels in label-to-port maps (line 4).
If the changes in new network cover link changes, the reachability-to-rules table should
be recomputed with the new ddNF ′ (line 11). Otherwise, we identify the changed entries
in the reachability-to-rules table. For each entry, if any port along the path (i.e., the 5th
column) is in ports pt, we recompute the entry to reflect the changes (lines 5-10).

Algorithm 3 Updating test packets

1: procedure UpdatePRobeS(table, ddNF , Devices′, topo′)
2: ddNF ′ ← updateDdnf(ddNF ,Devices ′)
3: S ′[p]← constructMaps (ddNF ′)
4: pt ← diffPorts (S[p], S ′[p])
5: if changeType(topo ′) = ruletype then
6: for e ∈ getEntry(table) do
7: if e.path ∩ pt ̸= ϕ then
8: table′ ← update(table, S ′[p])
9: end if
10: end for
11: else table′ ← consTable(ddNF ′)
12: end if
13: er, ea ← diff (table, table′)
14: for e ∈ er, ea do
15: tps← update (tps, e)
16: rm, lm ← addUncover (tps, e)
17: end for
18: table′ ← prune(table′)
19: return tps ∪minSetCover(table ′)
20: end procedure

3.2.2. Updating test packets. Not all packets in pervious test packets tps are affected by
the updated entries. Therefore, we identify the rules and links which cannot be exercised
by test packets tps. First, we update tps by removing test packets which correspond to
the removed entries2 er (line 14). The removed test packets may result in that some rules
rm and links lm cannot be exercised now. The added entries ea are similarly handled
(lines 15-17). The next step is to select test packets to cover the rules and links which
cannot be covered by tps. Because not every entry in table′ will contribute to the updated

2A modified entry can be considered as the removal of old entry and addition of a new entry.
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test packets, we prune table′ by removing entries whose rules (the 5th column) and links
(the 4th column) are not in rm and lm (line 18). And the final test packets are the union
of pruned test packets tps and a minimum of updated test packets tpst (lines 19). The
problem is converted to generate test packets for uncovered rules and links. It is solved
by the greedy Min-Set-Cover algorithm. Therefore, the test packets update algorithm
provides near-optimality solution with complete coverage.

4. Implementation and Evaluation. We construct the test packets generation engine
and test packets update engine in C language. Then, we implement the FIB parser, mon-
itor and reporter. Pronto [9] also uses these components. All experiments are performed
on a machine with 8GB of RAM and Intel Core CPU running at 3.40 GHz.

We apply NetGen to actual benchmark networks including Stanford [13] and Internet2
[14]. These networks contain more than 700,000 and 120,000 forwarding rules, respec-
tively. We compare our tool with ATPG [7] and Pronto [9], as they also generate test
packets to cover forwarding rules. In practice, not all ports in networks can be used for
testing or debugging due to a variety of reasons like security concerns. First, we evaluate
the rule coverage rates of our tool with available ports in the networks. Figure 4 provides
the error-bar values of the rule coverage for different ports. The rule coverage rates of our
tool increase with the value of ports. For most cases, the coverage values of NetGen are
higher than those of ATPG [7] and Pronto [9].

Figure 4. Rule coverage

We then evaluate the efficiency of NetGen. Table 2 shows the average test packets
generation time of NetGen, ATPG [7] and Pronto [9] with 100% available ports. After
100 production runs, NetGen takes 1.9 seconds and 1.2 seconds in average to generate test
packets for Stanford and Internet2 respectively. The generation time of NetGen is 6326
times and 25 times less than that of ATPG [7] and that of Pronto [9]. Finally, we evaluate
how efficiently NetGen can deal with forwarding rules update. We do not compare our
tool with ATPG [7], as it does not support test packets update. Figure 5 shows the test
packets update time for forwarding rules addition and rules removal. For each of the rule
addition and removal operations, we conduct 100 production runs on NetGen and Pronto
[9]. For rule addition, NetGen takes less than 200 ms for 73.8% runs, and less than 230
ms for 93.6% runs. For Pronto [9], 77.4% of runs can be in less than 800 ms. For rules
removal, NetGen takes less than 100 ms for 55.2% runs, and less than 200 ms for 89.7%

Table 2. Average test packets generation time for networks

Time (s) ATPG [7] Pronto [9] NetGen
Internet2 [14] 11240.1 51.8 1.9
Stanford [13] 8086.4 29.3 1.2
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Figure 5. Update time

runs. By comparison, Pronto [9] takes less than 600 ms for 84.1% runs. NetGen is an
order of magnitude faster than state-of-the-art tools.

5. Conclusion. This letter proposes a new test packet generation framework. It can
generate the minimal test packets to cover all rules and links. In addition, it supports
test packet update to deal with changed rules. Experiments on actual networks show
its efficiency. In future, we will extend the work to support networks containing stateful
functions, like firewall.
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