ICIC Express Letters ICIC International (©2019 ISSN 1881-803X
Volume 13, Number 11, November 2019 pp. 1021-1029

SCALABLE REVERSE OFFLOADING FOR DECENTRALIZED PROOF
OF LOCATION IN WEB APPLICATION

KEMAL ANSHARI ELMIZAN AND SUHARJITO

Computer Science Department, BINUS Graduate Program — Master in Computer Science
Bina Nusantara University
J1. K. H. Syahdan No. 9, Kemanggisan, Palmerah, Jakarta 11480, Indonesia
kemal.elmizan@binus.ac.id; suharjito@binus.edu

Received April 2019; accepted July 2019

ABSTRACT. Scalability for web application has been a problem for system architect over
the years. Many system changes are proposed from within the application structure, data
structure and computing structure to adjust with fluctuation of mobile network connectiv-
ity, diversity between a plethora of modern devices, and the development of application
programming paradigm. There have been many mobile and cloud offloading schemas
that have been proposed on the last couple of years, each with their own objective in
mind. When addressing proof of location in web application, the current approach of
using server-client architecture has problems in scalability. Server can only handle lim-
ited computations concurrently, and when addressing the problem of scalability, a good
approach is to use decentralized system. This paper is proposing a decentralized approach
using reverse offloading architecture to address proof of location as an alternative to glob-
al positioning system in web application. The development method for our decentralized
web-app is using WebAssembly, and our scalability performance is evaluated using dock-
er swarm simulation test, and our proposed reverse offloading architecture shows better
performance in network throughput and computing resources.

Keywords: Decentralization, Reverse offloading, Proof of location, Scalability, Web
application

1. Introduction. The demand to improve performance of web applications is substan-
tial. Online economic activity is growing rapidly in developed and developing countries
[1]. The modern world is always active and hyper-connected, which means that user ex-
pectations in terms of application experience and performance are higher than in previous
times. If a website does not immediately send a response after being requested, or if the
web application always runs with a long delay, the user will immediately switch to another
website.

Modern web application development is one of the application development processes
that focus on the performance of a web application. There are several modern methods
of web application development that will be discussed here, namely the mobile ofoading
system method for web-centric devices [4] which proposes the offloading method from
client to server in a device-independent manner using web technology. To be able to offload
computing, Park et al. developed the offloading system as follows: offloading is carried
out on a new client-server for the mobile environment where the client’s core workload is
carried out, run remotely from the server side. This system also controls the ofoading
function based on annotations from the program side to simplify implementation and
minimize the process of parsing overhead from web resources.

Offloading is a mechanism to move computing from one computer to another. Usually
offloading is done to divide computing from client to server. Yang, researcher from Intel.
proposes Manageable Application Code Offloading (MACO) techniques that maintain the

DOL: 10.24507 /icicel.13.11.1021

1021

1022 K. A. ELMIZAN AND SUHARJITO

responsive side of applications and granularity of codes so that they are easily managed
[5]. This research focused on code and user interface to analyze performance. Focusing
on modern offloading methods moves the trend to a term called reverse offloading [6],
which directs the understanding of the offloading process to how data processing carried
out in a cloud data center can be transferred to an edge or client device, to limit large
data transfers through public networks and avoid major latency due to these transfers.

The problem that will be discussed as a form of implementation of reverse-ofioading
is a proof of location problem. Proof of location is a marker of the location of a device.
Traditionally, GPS is used for this process, where the position of a device is marked by
the latitude and longitude position of the GPS tracking machine that is on the device.
However, this approach has several problems, namely the amount of data sent to the
server, which then resulted in the server-side service proof of location not being scalable.
Another problem is that the use of GPS is very easy to mock and spoof, and hence, a lot
of cheat occurs.

From Figure 1, we can see proof of location using current approach, where device sends
GPS location every certain unit of time, (e.g., every 30 seconds). With this approach,
server can easily be overwhelmed with requests; thus, making this approach is not scalable.

-
2 BINUS Univer

s Syah
| POST -6.200689,106.784960 r
POST -6.200946,106.782575 ‘ \/

N — -_‘__—-—-___:—'_"_-—--=='—'ll
’ PRI AN
[POST -6.200824,106.784257 ‘

POST -6.201689,106.7810128 ‘

L~

BINUS Kampus Angorek O

| POST -6.201639,106.782606 |

Satas Padang Parlamar
Do Mandeh

FIGURE 1. Proof of location with centralized approach

Broadcast L)
qqgutzngmgv3
Broadcast ,i , (S

QMWE Syah

qqgutzhsy7fu i, ¢ Ag':tor\ T
T Al -2 T RS
'?' - ;Cter\ —— Ac}q‘——: :;%
/1 4 e ’ LY -

Broadcast i/ 4 hey i’ \\ﬁ' -=" Actor
qqgutz589cqgh el G e A
\ T : aad ™ Actor
o4 eghctor Broadcast
~. o qqgutzjvtdoh
umu:sx.mwA-ctm‘;o . o) r&’ e
Actor

F1GURE 2. Proof of location with decentralized approach

ICIC EXPRESS LETTERS, VOL.13, NO.11, 2019 1023

This paper will propose a decentralized method of defining proof of location. In Figure
2, each node acts as a reviewer of their peer’s geohash proof of location. Each actor who
wants to validate their proof of location needs to have at least 3 reviewers to validate it.
This will improve positioning accuracy of the actor and makes it easy to validate which
actor spoofs their location, as well as increasing server’s scalability.

This paper consists of 5 sections. In the first section we are elaborating background
of the problem. Next section will consist of literature review on related works about
reverse offloading mechanism and proof of location. The third section of the paper will
discuss our proposed method and architecture of reverse ofloading. The fourth section will
elaborate the simulation scenario to benchmark our method with state-of-the-art client-
server scenario, as well as analyzing and comparing simulation statistics data between
them. Last section will contain our conclusion and future works that might be derived
based on our paper.

2. Related Works. On proof of location, some researches like [7,8] are experimenting on
using blockchain technology to alleviate the proof of actor’s claim of location. Amoretti
et al. [7] propose a scheme that prioritizes on privacy and trustworthiness of the loca-
tion claims. This can be achieved by implementing a decentralized peer-to-peer and
blockchain-based scheme. Amoretti et al. also tackle some fraud scenario on location-
based services on their robustness analysis, e.g., cheating on actor’s or peer’s location,
replaying proof of location and colluding with other peers.

Yang et al. [9] propose implementation of position-based cryptography with location
privacy, applied on top of fog computing. Some other researches also include fog and
edge computing as part of the implementation scenario, mainly as an IoT system. Tang
et al. [10] implement their proposed system architecture to reverse offload computation
into mobile edge servers, as part of the decentralized peer-to-peer network to improve
connectivity on mobile devices.

Zbierski and Makosiej [11] propose the use of web workers as a method of cloud and
mobile optimization. Zbierski and Makosiej present a system for offloading web workers
on HTML5 from a mobile application to a remote server. The proposed solution is fully
transparent to developers, i.e., the existing application code does not need to be changed
in any way to benefit from this offloading method.

This research is a quantitative research that will discuss the design of a reverse-ofioading
web application system using WebAssembly and compare the results of the scalability
test of the web application with the results of scalability testing of web applications with
client-server architecture which is state of the art. This study measures the ability of the
application system performance if the user accesses this application concurrently in large
numbers and within a certain period. Application performance is measured based on
load or load that occurs on the server and network load used by both methods. Further
performance measurement processes will be explained in the sub-section of the evaluation
phase.

3. Methodology. This research is experimental research, which will compare the mea-
surement results of the scalability capability of a web application architecture that can be
seen in Figure 3. with a web application architecture using the reverse-offloading method
using WebAssembly, which can be seen in Figure 4.

In Figure 3, we can see the flow data and application process in the usual client-server
architecture in a web application. The browser on the client requests from the Ul logic
controller, using JavaScript. HTTP requests are made on the endpoint API from the
server side to get results from computation or data processing carried out on the server
side; in other words, the actual computing process is done on the server side, and the
client is only responsible for formatting data generated from the server side.

1024 K. A. ELMIZAN AND SUHARJITO

- Client - Server
Browser
e o] API Application -
Ul Logic Endpoint || Logic
| Client 2
| Client 3

RN

F1GURE 3. Client-server application architecture

= Client =l Server

= Browser

R
N

Centralized
Data
Source

WASM
Binary

Outbound] | _._....._..].1 API

N
/——-\ Controller ; Endpoint
e

Ul Logic

Local ;
Data

Client 2 RAREEES
Client 3 - ;

v |

Binary
Source

FIGURE 4. Proposed reverse-offloading system design

This research would like to propose a reverse offloading application architecture, where
the computational logic that previously existed on the server, was offloaded, so that the
computation was done on the client side. The assumption is, for a small user scale, like
one or two clients, this kind of architecture will not feel the benefits of the performance,
instead it will make the application processing on the client side become heavier, because
the main application is run not on the server side, but on the client side. This design
refers to Figure 4.

This reverse offloading system focuses on transferring the computation and storage of
data that is shared (offloaded) from the server to the client. In Figure 4, it can be seen
that in the client architecture there are WASM Binary and Local Data Source which are
the main logic of this application web. WASM Binary is taken from the server when the

ICIC EXPRESS LETTERS, VOL.13, NO.11, 2019 1025

client first requests the server and is taken from the binary source. Local Data Source is
also replicated from centralized data sources on the server and is taken when the client first
connects to the server. This client architecture scheme is then replicated for subsequent
clients, who have their own WASM Binary and Local Data Source.

4. Results and Discussion.

4.1. Simulation scenario. The simulation will run in this following machine with the
following specification: MacBook Pro 2016, intel core i7 2.7GHz, and 16GB RAM. Simu-
lation will run on a docker container to simulate scalability, similar to deployment mecha-
nism done by [12]. This simulation will simulate both client-server and reverse-offloading
application.

4.2. Data analysis. After doing the simulation with the steps above for each scenario,
we obtained simulation statistics that can be seen in Figures 5-7. Figure 5 shows the
comparison of CPU resource usage, Figure 6 displays the results of comparison of resource
memory usage, and Figure 7 displays a comparison of Net I/O resource usage. Figures 8
and 9 show a comparison of these three metrics in one diagram.

0.170 {

0.165 |
0.160 |
0.155 |
0.150
0.145

0.140 1

0.135 4
0.130

0.125 4
0.120 4
0.115 1
0.110 4
0.105 |
0.100 {
0.095 {
0.090 {
0.085

0.080 1

average(CPU_PERCENT)

0.075 1
0.070
0.065 1
0.060 {
0.055 1
0.050 1

0.045 |

EE TR
0.040 | FEPRPFIFIININIIINY

0.035 1

0.030 4 223330
FEIFPIPIINIINININNDY
0.025 FEFFIIIIIINIINININIRTY
FR3333535535555555) EIF553535355555
0.020{ | EEEETEEEEEE LT
ST EEEE LT
0.015 1 EEEETTTEEEE LT
PREIBIIFIIIIIININ]
0.010 74 PREIIIIFIIIIIIIIS]
J PREIPIIFIIIIIINIS]
0.005 | PREIPRIFIIIIIIFIS]
j PPPIP23IFSI3222S] N
0.000 /| Vrr s s s s L

cs-client cs-server ro-client ro-server
CLASS

Ficure 5. CPU usage (in percent) comparison

Results shown in Figures 5 to 7 show that in the reverse-offloading simulation, CPU
usage and Net I1/O are lower than the client-server architecture while maintaining similar
memory usage as the client-server architecture; even on a 50x scale. This shows that
the reverse-offloading architecture has the advantage of increasing scalability compared
to the client-server architecture. To discuss the details of the results of further scalability
statistics, we can see in Figures 8 and 9 for the details of this simulation classification
scenario.

On Figure 8, we classify 3 metrics (network I/O throughput with label NET_10, mem-
ory usage percentage with label MEM_USAGE, and CPU usage percentage with label

1026

average(MEM_PERCENT)

average(NET_10)

0.700
0.675
0.650
0.625
0.600
0.575
0.550
0.525
0.500
0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225
0200
0.175
0.150
0.125
0.100
0.075
0.050
0.025

0.000

K. A. ELMIZAN AND SUHARJITO

FIFRFIIRIIIIIDNNN]
ISR E RS |
22D 2]
FRPPIIRRDIIRNN]
P20 23]

7
\

cs-client

F222220232002203
FE3E23B333300303

Edd

23>
EEI2322223235
22>

>

cs-server

CLASS

[22R2200232223000
IEEEIFBIPIIRININD
PREREFRIPRIINNNNND
IEERFRFPRRINNNNND
IERFFRFORRRDRD0Y

N

ro-client

FEEFFIFIPINNRNNND
PEEFF>30233353355)

ro-server

FIGURE 6. Memory usage (in percent) comparison

425

400

375

350

325

300

275

FERIBRRRFIIIINNDY
FEPIBRRRFRD000)
FERPIBRR333000550)

/)

PRIFIFIIIININIINNNTY
PRIFIFIIIIFIIIINNYY
PRIFIFIIIIFIIINNDY
PRIPIFIIIIFIIINNDY
PR22IFIIIIFIININNDY
EEEEEEEEE Y
BEIFSSS333555550
PEP5553353555555
BE2SSP5333555555
BIBRINIIIINIIINNNS
BIPRINIIIIIIINNNS
BIPRINIIIIIIIINNS
BIPRINIIIIIIIINNS
F2323523335533353
BRIFIIRIIIIIINNNG
FERIPRIFIINNNNNG
BRIFFFRIFINNIINNNG
BRIFFFRIFINNINNNG
BRIFIBIIIINNNNNNG
BRIFFBIIIINNINNNG
2222 RS R 2 21
2322222 R R 2 21
PRI2IFIIIIIIIINDDY
PRIPIFIIIIINIINDDY
1222222 22222 2 2 2 2)
PRIFIFIIIIINIIINDDY
PRorIrIIIIIIIIINY
PRo2IRIIIIIIIIINY
PRORINIIIIIIIIIDNY
BIFRIRIIIIRIIIINDG
i dddiddddidddad
PRIFIFIIIFIIIIINDTY
FRFIFFIIIINIINNTY
PRIFIFIIIFIIIIINNTY
PRIFIFIIIFIIIIINDTY

PEIFFIFFIPIIIFIID
FERIFRFFIININNNND

1u

20

50

cs—client

cs-server

CLASS

ro-client

ro-server

FIGURE 7. Net I/O usage (in kbps) comparison

ICIC EXPRESS LETTERS, VOL.13, NO.11, 2019 1027

0.0850
450 fp.oszs
0.0800
0.0775
a0 | 00750
=) 0.0725
375 | 0.0700
0.0675
350 0.0650
0.0625
325 | 0.0600
0.0575

0.0950
il
425
280

350

o () & o oo
330 :
300

270

475 0.0875
320
290
260

250
240
230
220

20 300 | p.osso .
_ o 2100525 §
8 130 — 275 & L o.0s00 3
5 180 ; y 2 lgoa7s = | Series:
= | 1 = : o
z 250
2 170 Raeaesy) El004s0 © |©average(NET_IO)
E)
g 160 225§ 0.0425 B (D average(MEM_USAGE)
® 150 &l o400 o
B 0037s § & average(CPU_PERCENT)
w0 00| e | Size (CLIENT_CLASS):
130 :
120 175 | 0.0325 5.0-@ & §850.0

0.0300
@ 150 | 0.0275
0.0250
125 0.0225
0.0200
0.0175
0.0150
0.0125
0.0100
0.0075
25 0.0050
0.0025
0 0.0000
-0.0025

110
100
50
a0
70
60
50
40
30
20
10

100

75

50

cs-client
Ci-server
re-client
ra-server

CLASS

F1cURE 8. Evaluation result comparing client-server and reverse-offloading
class on network I/O, memory usage, and CPU percentage

CPU_PERCENT) as a metered comparison between each class. In this picture we can
also see 4 different classes scattered among 5 to 50 simulation scenarios. Those classes
are cs-client, cs-server which represent client-server architecture, and ro-client, ro-server
which represent reverse-offloading architecture.

The result shown in Figure 8 shows that reverse-offloading simulation has lower CPU
and Net I/O compared to client-server architecture, while maintaining similar memory
usage, even on H0x scale. This demonstrates reverse-offloading scalability performance
advantage over the client-server architecture. To further break down these statistics into
scalability results, we can refer to Figure 9 for the simulation scenario classification.

On Figure 9, we can see the scalability breakdown of reverse-offloading performance
improvement compared to client-server on CPU and Net /O attributes. Classes ro-client
and ro-server show stable figure on CPU and Net 1/0O, while having similar values on
memory usage compared to cs-client and cs-server classes.

5. Conclusion and Future Works. In this paper, we analyze two separate methods in
web application development: the current state-of-the-art client-server architecture and
our proposed reverse-ofoading architecture. We proposed a decentralized system archi-
tecture and compared its scalability performance, by running a docker swarm scalability
testing and gathered the CPU usage, memory usage, and Net 1/O of both architectures.

1028 K. A. ELMIZAN AND SUHARJITO

350 0.0950
340 @ @ 500 | 0.0825
330 0.0900
475 0.0875
320 0.0850
310 450 | 50825
200 0.0800
290 425 L gorrs
280 a0 | 00750
270 0.0725
260 375 [00700
250 0.0675
240 350 | 0.0650
230 @ 0.0625
325 | 0.0600 Series:
220 0.0575
210 300 | g.oss0 average(NET_IO)
200 2| 00s2s ¥
G 190 275 % Z
o g [00500 average(MEM_USAGE)
5 180) ,op 2 [00475 5
z g
& 170 Z|ooas0 2
- m
g 160 25 G| 00425 3 % average(CPU_PERCENT)
& o400 g
200 0.0375 Shape (CLASS):
0.0350 @ cs-client
175 | 0.0325 E cs-server
0.0300 4 ro-client
| 150 | 0.0275
A ro-server
0.0250
| 125 0.0225
0.0200
100 | 50175
0.0150
| 75
0.0125
- 0.0100
0.0075
p 2o 0.0050
0.0025
B 0 0.0000
-0.0025

25 k1 35 40 45 50
CLIENT_CLASS

FiGUuRrE 9. Evaluation result of docker swarm scalability simulation from
5 to 50 concurrent clients

After running simulation, we can conclude that scalability improved when we switched to
our proposed reverse-offloading architecture, especially on CPU and Net 1/O.

Based on the results of our simulation, a decentralized solution can be applied to solving
a scalability problem and improving performance of proof-of-location systems. These
promising results are based on our simulation experiment; therefore, future research can
include the following topics: hardware architecture system of decentralized connectivity,
e.g., by using low-energy Bluetooth and Wi-Fi to implement this idea and simulation of
reverse-offloading architecture to tackle different problems other than proof-of-location.

Acknowledgment. The authors wish to thank Bina Nusantara University Computer
Science Department, BINUS Graduate Program.

REFERENCES

[1] Global e-retail sales share by region 2016 | Statistic, Statista, https://www.statista.com/statistics
/239300 /number-of-online-buyers-in-selected-countries/, [Accessed: 25-Sep-2018].

[2] F. Smith, 10 tips to improve application performance, NGINX, https://www.nginx.com/blog/10-
tips-for-10x-application-performance/, [Accessed: 25-Sep-2018].

[3] J. Jackson, How bad performance impacts ecommerce sales (Part I), Load Impact, http://blog.load
impact.com/blog/how-bad-performance-impacts-ecommerce-sales-part-i/, [Accessed: 25-Sep-2018].

[4] S. Park, Y. Choi, Q. Chen and H. Y. Yeom, SOME: Selective offloading for a mobile computing
environment, IEEE International Conference on Cluster Computing, 2012.

[5]

ICIC EXPRESS LETTERS, VOL.13, NO.11, 2019 1029

S. Yang, Manageable granularity in mobile application code offloading for energy savings, IFEFE
International Conference on Green Computing and Communications, 2012.

N. Antonopaulos and L. Gillam, Cloud Computing, Springer, 2010.

M. Amoretti, G. Brambilla, F. Medioli and F. Zanichelli, Blockchain-based proof of location, IEEE
Int. Conf. Softw. Qual. Reliab. Secur. Companion, pp.146-153, 2018.

J. Alcalde-Unzu and M. Vorsatz, Strategy-proof location of public facilities, Games Econ. Behav.,
vol.112, pp.21-48, 2018.

R. Yang, Q. Xu, M. H. Au, Z. Yu, H. Wang and L. Zhou, Position based cryptography with location
privacy: A step for fog computing, Futur. Gener. Comput. Syst., 2017.

W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou and Q. Ni, An offloading method using decentralized
P2P-enabled mobile edge servers in edge computing, J. Syst. Archit., 2019.

M. Zbierski and P. Makosiej, Bring the cloud to your mobile: Transparent offloading of HTML5 web
workers, Proc. of Int. Conf. Cloud Comput. Technol. Sci. CloudCom, pp.198-203, 2015.

X. Wan, X. Guan, T. Wang, G. Bai and B. Y. Choi, Application deployment using Microservice and
Docker containers: Framework and optimization, J. Netw. Comput. Appl., vol.119, pp.97-109, 2018.

