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Abstract. This paper presents a novel and simple encryption technique that provides
very efficient and highly illusive encrypted data. A feedforward Neural Network (NN)
that uses gradient descent methods is used in generating the encrypted data and the
keys. The idea is about using the output of the hidden layer as the encrypted data. The
resulting weights (hidden and output layers) are considered as the keys that are used for
encryption/decryption at the sending and receiving ends. The input data is processed
at the binary level format. Training is done for the neural network one time and the
network is used for several transmissions of encrypted data until it is retrained for new
keys. The training takes short time on multipurpose commercial computer to achieve
very illusive encrypted data. Simulations and testing that have been achieved so far are
encouraging for further future research.
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1. Introduction. Securing a network for digitally stored or transmitted data is an ulti-
mate need for all organizations in the world. There is everlasting need to keep enhancing
encryption and protection. Many encryption techniques have been proposed in [1-12,15-
18]. They use different models that implement different processing techniques as stream
based or block based models. Different key based diffusion and confusion operations were
proposed. Mesh-based technique and directive operators are also used in [1]. Howev-
er, these methods lack the needed confusion due to its quasi-linear nature and might be
exploited by hackers. The mapping can be more deceptive if it was nonlinear. On the
other hand, the proposed diffusion in this paper has connectionist nonlinear and complex
nature that makes it even difficult for predicting the nature of the encryption even if the
keys were known. Additional information at both ends should be shared regarding the
architecture of the NN and the nature of the activation functions used to complete the
process. All parts of the key (i.e., weights) work collectively and in parallel in generat-
ing the encrypted/decrypted data. Neural networks with Jordan training method were
used in generating keys for encryption [19]. A neural network was trained as sequential
machine for encoding process. However, sequential machines have a problem of delay, es-
pecially for long input sequences. Other researchers used the neural network to generate
encryption keys and they repeated the training process at the receiving end to generate
the decryption keys [20]. In that sense, they did not take advantage of the compactness
and the mirroring capabilities of the neural networks.

In summary, the proposed technique offers the following contributions.
1) More effective nonlinear mapping is used to overcome any embedded exploitable

linearity in the mappings (provided by nonlinear activations of the neurons).
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2) More complexity is added with the parallel interconnected computational method
used (provided by neural networks).
3) More confusion is generated since the processing is done with real type data (text

is converted to binary and then to real values (floating point) that go operations such as
multiplication and addition).
4) It uses a block-based cipher rather than stream based one and keys are re-generated

for every block.
5) The keys used for encryption are different from keys used for decryption. This

unsymmetrical key generation is an additional security feature.
6) When the relatively time-consuming training is finished it is followed by transmission.

The created keys are used in generating the encrypted signal and recovering the original
data at the receiving end. The cost of complexity is very low (It is a single loop for every
neuron using single layer at both ends).
The organization of the paper is summarized as follows.
a) Section 2 describes the encryption/decryption model being proposed.
b) Section 3 discusses the weights and inputs/outputs.
c) Section 4 presents the encryption/decryption process.
d) Section 5 shows discussions.
e) Section 6 gives conclusions and future work.
The paper presents detailed description for the steps of the algorithm with examples.

The different layers of encryption/decryption and neural mapping will make it extremely
difficult for hackers to decode the encrypted text. The paper presents decryption of the
encrypted plain text that is retrieved 100% at the receiver end.

2. Encryption/Decryption Model Details. A two-layer feedforward Neural Network
(NN) (8 × 8) is trained to function as a mirror. Every input vector fed to the NN gives
an identical output vector. The output of the trained NN should be an equal vector to
its input binary values. This is done for all possible 256 binary input values. The idea
here is to train this NN on 256 possible 8-bit binary vectors using a gradient descent
learning algorithm. After training is complete with almost zero accumulated error, the
hidden layer of the trained NN is used to encode (encrypt) input vectors from the input
plain text (that is already converted to binary). The binary values from input stream
are grouped into strings of eight bits and fed to the hidden layer. During this stage of
encryption the binary input vector of 8 bits coming from the original block is replaced
by the 8-bit output of the hidden-layer neurons. The output of this layer should have no
correlations what so ever with the input vectors. Only, the weights of the output layer
are sent as a key to the receiving end. At the receiving end, those weights are used in a
single layer NN to function in a similar way to the output layer in the original trained NN.
The encrypted values in this case will be the inputs to this single layer and the outputs
of this layer will be similar to the original input vectors that were used as inputs for the
hidden layer at the transmitter end. This process of encryption/decryption is done for
every group of 8 bits streaming to the hidden layer NN at the transmitting end and the
decryption is done at a similar stage at the receiving end as explained earlier. Please see
Figure 1, which depicts the process of encryption/decryption.
The training for the two-layer NN is done one time. After training is complete, the net-

work is separated into two parts. The hidden layer is used in encrypting 8-bit groups from
the input stream, and the output layer is used in decryption at the receiving end. The
training for the two-layer NN could be repeated with new initialization for the weights
whenever there is need for that. The encryption/decryption processes are not time con-
suming at all. The training only takes almost one second if it is done on a multipurpose
dual core computer. Of course, the identical input/target vector pairs that are used in
the training are the same 256 possible binary inputs/targets used every time. This will
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Figure 1. The mirror two-layered NN used for encryption/decryption

finish the stage of training. The average CPU time for this is 1.0313 seconds using Matlab
14 on Core i5 7th generation computer with 8GB RAM. That could be minimized using
more efficient hardware and using assembly language instead of Mat lab 14 since we are
dealing with binary values (future work). For every new block of data being transmit-
ted (10K bits), a new training phase could be invoked and a new set of weights (for the
output layer) can be generated and sent along with the encrypted data. The weights for
the output layer are sent with the encoded data at the beginning of the encrypted block.
The whole process will be repeated as long as there is data transmission. More details
regarding the NN properties are shown below.
Network Properties:

Number of layers = 2
Inputs = 8
One hidden layer
Number of neurons in hidden layer is 8.
Transfer function is TANSIG.
Number of neurons in output layer is 8.
Network type: Feed-forward backpropagation
Training function: Levenberg-Marquardt backpropagation algorithm (Trainlm)
Adaption learning function: Gradient descent with momentum weight and bias
learning function (Learngdm)
Performance function: Mean squared error
Training ratio: 0.7
Validation ratio: 0.15
Test ratio: 0.15

Training algorithm used here is Bayesian regularization backpropagation, please see
Figure 2 and Figure 3. In Figure 3, both curves for “Train” and “Test” totally match.

Network training updates the weight and the bias values according to Levenberg-
Marquardt optimization. It minimizes a combination of squared errors and weights, and
then determines the correct combination so as to produce a network that generalizes out-
puts similar to targets. This training process is called Bayesian regularization. In our
network, the training stops when the performance gradient falls below minimum gradient
error value. In Figure 2, mu is the control parameter for the algorithm used to train the
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Figure 2. Training and validation parameters

Figure 3. Training error versus epochs (an epoch is a whole batch of input vectors)
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neural network. Gamk is the effective number of parameters. ssX is the Sum squared
Parameter. Valfail is number of failures in validation checks which was zero for all epochs
[13].

3. Binary Weights & Input/Output. Maximum value for weight found was less than
23, so it requires only 5 bits as exponent. Precision values are limited to 6 bits weights,
and the key can be represented as a 12 bits vector as follows:

Sign Exponent Precision
+/− 1 2 3 4 5 1 2 3 4 5 6

The Appendix (Tables 1, 2 and 3) shows the weights of both layers as a training outcome
example. All the encrypted values are associated with weights and biases shown in those
tables. At each new phase of training, new sets of weights (new keys) will be generated.

4. The Encryption/Decryption Process. Training is completed using a whole set
of binary values from 0 to 255 as inputs and identical targets (mirroring). This would
cover all possible binary values of characters that could be generated with 8 bits. The
weights in the hidden layer are used as a key to encrypt the inputs and the weights in
the output layer are used as a different key for decrypting the encrypted inputs. When a
block is packed for transmission it is accompanied with the binary values of the output
layer weights to be used as the decryption key. Those weights consist of 8×8 = 64 values.
If each weight is encoded with 12 bits, as mentioned above, then the total decryption key
has 8× 8× 12 = 768 bits. With proper compression for the binary values of the key, the
key length can be reduced by 1 : 11 ratio [14]. On average, the key length will be around
70 bits and that is acceptable if a block of data with length 10K bits are processed.

For more security and confusion in the sent data, the whole process is repeated for
every 100 blocks of data being transmitted.

A new decryption key will be generated and accompanied with the next 100 blocks of
encrypted data. All will be packed and sent in a similar way to the previous phase. In this
case we guarantee that the same key will not be used for more than 100 blocks of data.
If the transmission rate is 1M bits per second (10K × 100) and the total time needed
to transmit the 100 blocks is 1 second, then in this 1 second (assuming we are using our
Mat lab 14 and the 5i dual core computer) will be enough to generate another key. The
new encrypted block will be pipelined with the previous block. Other processing times
are negligible and can be discarded.

5. Discussions. The high non-linearity and the unpredictability of resulting weights
of the NN result in highly elusive encrypted codes and unpredictable keys. The keys,
however, are modified every 100 blocks of data transmitted. This is done with no waste
of time as transmission process and new training of the NN will be going on in parallel.
The standard deviation of randomly selected blocks of data is around 100. This is an
acceptable value knowing that the decimal value of transmitted data (encoded/encrypted)
varies from 1 to 256 (8 bits). Random test for data correlation gives values of −0.3 based

Figure 4. Correlation of a sample between input values and encrypted values
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on the decimal values of the encoded data. Figure 4 shows the relation between the
decimal values of text (binary) and the encoded (encrypted) data. The decimal input
values of the 256 possible characters show no correlation/relation at all with the associated
encrypted values. The high nonlinearity and no-association pattern makes it difficult for
any hacker to break the encryption. The correlation factor at different segments (every
10 characters) showed different values between [−1] and [+1]. In general, the approach is
compact and very simple, the ability to re-generate new keys and their highly nonlinear
implementation by the neural network is the reason of producing very illusive encrypted
data. The key used for encryption is different from the key used for decryption. The key
used for decryption is used at the receiver end only. This approach is direct comparing
to other existing methods that use boxes, meshes, and tables for different mappings. No
exhausting shuffling is used. Shuffling, mapping, and encoding are implemented implicitly
and in parallel by the hidden layer of the NN. The output layer of the NN is reversing what
the hidden layer has done. The 8 bits input is processed in parallel due to the parallel
nature of the NN. This implies more efficiency and collectivity in generating the encoded
data. Figure 2 and Figure 3 summarize the training process. The validation has zero
failures and the NN was acting like a mirror perfectly. More efficient training techniques
could be used to minimize training time. In this method, no keys are directly generated
based on random numbers generators. Expanded keys used in many methods are also
indirectly based on those random number generators. Those generators are pseudo in
nature and their output behaviours are cyclic and predictable. Although the weights in
the NN are initially generated randomly, the encoded data do not depend directly on
those keys. All weights are incrementally updated during the training (learning) process.
Moreover, their output is passed through a highly nonlinear activation function with
variable characteristics. The encrypted data cannot be reversed even if the encryption
key is known.

6. Conclusions and Future Work. Although many researchers have strong believes
that Neural Networks (NN) are not appropriate at all for encryptions and decryptions, in
this work are showing the applicability of NN in efficient encryption/decryption processes.
With appropriate selection of architecture and training parameters and with the avail-
ability of reasonable hardware, blocks of text or input data can be efficiently encrypted in
a manner very competent to traditional methods. Future work will focus on using faster
and more efficient techniques for training the NN such as [21-28]. Hybrid encryption or
another stage of encryption could be added, more layers of NN to minimize any correlation
between the plain text (inputs) and the encrypted data can be tested.
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Appendix

Table 1. Weights of the hidden layer-keys (example)

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8

−0.001111 −0.010000 −0.001100 −0.010011 −0.010010 −0.001010 −10110.01001 0.001

−0.001100 −0.001110 −0.000100 −0.010001 10110.0100 −0.010000 0.010001 0.001101

−0.000111 −0.001100 10110.010010 −0.010010 −0.001010 −0.001111 0.001111 0.000111

−0.001110 −0.010010 −0.000111 −0.010011 −0.010000 −0.001011 0.001011 10110.011

−0.001100 −0.001110 −0.00111 −0.010100 −0.010010 10110.010100 0.001011 0.001001

0.100011 0.011000 0.010010 10001.110110 0.001111 −0.010011 0.001101 0.011101

−0.001111 10110.001110 −0.001010 −0.010010 −0.010011 −0.0011 0.001101 0.01

10110.010110 −0.010010 −0.000110 −0.010010 −0.010000 0.001101 0.01001 0.001101
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Table 2. Weights of the output layer-keys (example)

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8

0.00011 0.000111 0.000110 0.00011 0.000111 0.000111 0.00011 100.11011

0.00011 0.001000 0.000110 0.000101 0.00011 0.00011 100.11101 0.00011

0.001001 0.001001 101.000011 0.001001 0.001000 0.000111 0.001001 0.001001

0.000010 0.000111 0.000111 0.000001 0.000001 11.01111 0.0000011 0.000010

0.000111 101.00001 0.000111 0.000111 0.000111 0.000101 0.001000 0.001000

0.001000 0.001000 0.001000 0.001000 101.0001 0.000100 0.001000 0.001000

100.111000 0.000110 0.000101 0.000110 0.000111 0.000100 0.000111 0.000101

0.00011 0.000011 0.000011 100.100111 0.000111 0.000011 0.000100 0.000011

Table 3. Values of the bias in both layers-keys

B1 B2

−0.001 −1010.001111

−0.000111 −1010.01

−0.001001 −1010.010101

−0.000101 −1010.0101

−0.000111 −1010.010001

−0.001 −1001.0011

−0.000111 −1010.001011

−0.000111 −1010.01001


