
ICIC Express Letters ICIC International c⃝2019 ISSN 1881-803X
Volume 13, Number 12, December 2019 pp. 1157–1167

SPREADSHEET AND COMMA-SEPARATED VALUES (CSV)
BASED DOMAIN-SPECIFIC PROGRAMMING LANGUAGE

FOR WEB APPLICATION DEVELOPMENT

Noprianto1, Benfano Soewito2, Ford Lumban Gaol1

and Bahtiar Saleh Abbas1

1Computer Science Department, BINUS Graduate Program – Doctor of Computer Science
2Computer Science Department, BINUS Graduate Program – Master of Computer Science

Bina Nusantara University
Jl. K. H. Syahdan No. 9, Kemanggisan, Palmerah, Jakarta 11480, Indonesia

nop@noprianto.com; {bsoewito; fgaol; bahtiars }@binus.edu

Received May 2019; accepted August 2019

Abstract. From programming language point of view, when developing web applica-
tions, programmers may use domain-specific programming languages or general-purpose
ones. Depending on the experiences and languages, developing a web application could
be a simple or complex task. It is complex because the programmer should use more
than one languages (HTML, CSS, Javascript, language at the server side, and others).
To reduce the number of languages, programmers may use domain-specific languages.
The more specific the language, the simpler the development could be. However, some
researches show that language specificity itself could be another challenge. Therefore,
to make web application development simpler and at the same time make the domain-
specific language useful, more research is needed. We propose the usage of spreadsheet –
software packages that have been around for about four decades. We emphasize simple
modeling technique, combined with column/row based syntax, saved as comma-separated
values (CSV) file format, which can be interpreted as a fully functional web application.
Experiments prove this method is usable and results in simpler web application develop-
ment with significantly less development time (43%) and lines of code (30%) compared
with standard web technologies.
Keywords: Domain-specific programming language, Spreadsheet, Comma-separated
values, Web application, Blog

1. Introduction. One of the goals of the World Wide Web – introduced in the early
1990s – is to make it possible to access information from any source in a consistent and
simple way [1]. Collections of documents might be easily accessed using standardized
protocol and document format that can be implemented to work across computing plat-
forms. The protocol is HTTP and the document format is HTML, that may contain links
to another documents. HTTP protocol works using client/server model, where an HTTP
client (or user agent, typically a web browser) requests some resources to an HTTP server.
The server then gives responses if the requested resources are available.

In earlier implementation of the World Wide Web, the requested resource was static
resource, i.e., existing file on a filesystem [1]. This eventually developed into dynamic
resource when HTTP server softwares were capable of running some program and returned
the output as HTTP response [1]. Because such program is not limited to return simple
text information or opening existing files, more possibilities are open. For example, the
program may open a connection to a database system, performs some database operation,
and returns the result back to the HTTP server. All of these are transparent to users:

DOI: 10.24507/icicel.13.12.1157

1157



1158 NOPRIANTO, B. SOEWITO, F. L. GAOL AND B. S. ABBAS

they request some resources and the server returns some responses. This serves as the
basics of web application as seen today.
While the basics sound simple, the mechanisms are not. How some programs are run by

HTTP servers are not implemented in the same way. In earlier days, we typically worked
with CGI (Common Gateway Interface). CGI was the first consistent server-independent
mechanism [2]. As long as the program speaks HTTP protocol, it can be developed using
any programming languages. While CGI is still being used, alternatives are available,
such as template processing.
If we can freely choose the programming language, what makes the difference between

one language and another? We believe that easy or hard to use is not the definitive answer
because it probably depends on the programmer and the domain of the application. We
suggest that the main difference is the expressiveness of the programming language, that
affects the source code needed to develop a web application.
From the domain of the application, we can categorize programming languages into

general-purpose and domain-specific. The former can be used to develop any – if not all
– kind of applications. The latter – as the name suggests – can only be used to develop
very specific or limited kind of applications. Domain-specific languages trade generality
for expressiveness in a limited domain [3]. There are advantages and disadvantages of
both language categories.
In no specific order, we may list the advantages of general-purpose languages as the

following: libraries and tools available, application domain, and programmer’s investment.
General-purpose languages, particularly the popular ones, enjoy a lot of libraries and tools
to ease the application development. This may significantly speed up the development
[4]. In top programming languages, almost all of them are general-purpose [5]. However,
when we talk about web application development, there are some challenges. If the
programming platform does not come with mechanism to interface with HTTP servers,
we may end up using CGI. Even when ignoring the computing resources needed, we
typically need to code more to manually speak HTTP if we have to stick with CGI [2].
If the platform supports web application development, or some standards are supported,
the implementation may require us to write HTTP-specific code – to some extent. After
all, if a general-purpose programming language comes with very specific construct for
web development at the core language level, it will eventually become domain-specific
language.
On the other side, domain-specific languages offer solution directly targeted at the

problem domain. They offer expressive power, focused on and usually restricted to, a
particular problem domain [6]. For the web, a domain-specific language may contain
everything needed to develop a fully functional web application in few lines of code, with
less or no technical details on HTTP client and server, and everything between them.
From security point of view, using a specific language may reduce the possibility of unsafe
codes, as the underpinning operations are handled by language interpreter or compiler.
Based on a recent research, some security-related problems might be caused by some
programming styles [7].
Now we move to the disadvantages. A research already listed the disadvantages [8]:

development cost, education cost, limited availability, difficulty of finding the proper
scope, difficulty of balancing between domain-specificity and general-purpose construct,
and possible loss of efficiency. Based on web application domain, we see other challenges:
how to make the domain specific language easy to use, hide the technical HTTP details
from the programmer, and – at the same time – provide simple modeling of the user
interface/web page layout.
In this work, we propose new, spreadsheet-based domain-specific programming lan-

guage to simplify the development of web applications. The proposal starts with related
works, on the usage of spreadsheets as the modeling tool and programming language



ICIC EXPRESS LETTERS, VOL.13, NO.12, 2019 1159

semantics. In proposed method section, the details on how the language works are pre-
sented, including language syntax, semantics, and rules. For interested readers, we also
provide the language interpreter along with discussion on its architecture. Experiments
and their results are also presented, followed by conclusions.

This work contributes to web development research, in form of a domain-specific lan-
guage, to simplify the development and free the programmers from lower-level details on
HTTP, while producing some standard-compliant HTML codes.

2. Related Works. Based on our previous research on spreadsheet, we learned that
spreadsheet-based modeling is helpful, mostly because of its table-based system [4]. Spre-
adsheet can also hide the programming complexities from the programmer, for example,
eliminating the need to explicitly specify the data type. Its computational techniques
match users’ task and shield users from the low-level details of traditional programming
[9]. And, for styling user interface, we can use the cell attributes [4].

In modern spreadsheet software, a single spreadsheet document may contain one or
more worksheets. For some application, a single worksheet itself may contain up to
million rows and thousand columns [10]. As a very big table, a worksheet offers more
than enough cells to model a user interface or an application. The modeling is not limited
to web application. We can also model the desktop GUI application or possibly another
kind of user interfaces [4]. Even some GUI libraries come with similar concept with their
grid-based layout manager [11, 12]. The key idea is to layout a user interface in a grid.
Researches prove this method significantly reduces the time needed to manually code the
user interface – for more than one platform in single code base [4].

Spreadsheet offers more than just a table-based interface. We can program without
knowing too much about the detail. For example, we can put a number into a cell,
without specifying the data type. We can put a string without the need to surround it
with quotes. We can put values anywhere and reference them later. All of these can
be combined with simple formula. Spreadsheet offers an environment suitable for many
types of applications, from small scratch pad to complex ones [13].

A cell in a worksheet is more than just a value. After putting some text, we can style
the cell. Styling may be as simple as applying text color or background color [4]. We
may also format the text as bold, italics, and so on. If we combine the styling with user
interface layout, we can end up with a colorful multi platform user interface, modeled by
a single colorful worksheet [4].

The usage of spreadsheet to model a web application is not a new concept. A research
from Benson et al. presented a system called Quilt that allows users to do rapid proto-
typing [14]. The design goals were to reuse existing HTML and spreadsheets as much
as possible, minimizing the programming-like concepts. Another research showed how to
create interactive web data applications with spreadsheet, presented a live programming
environment that extends spreadsheet metaphor [15]. Based on our previous research on
data entry domain-specific language, spreadsheet semantics can be beneficial, particularly
for spreadsheet users [16].

Compared with previous studies, this work presents the programming language and
the modeling tool, using only a single spreadsheet document to develop a fully functional
database-backed web application.

3. Proposed Method. Every modern spreadsheet software may suggest a default file
format. That way, a spreadsheet software can put extra features, probably specific to
them. Today, it is common that one spreadsheet software can open from or save to another
file format used by another spreadsheet software, with some level of compatibility [17].
To make this situation better, some file formats are standardized and their specifications
are open.



1160 NOPRIANTO, B. SOEWITO, F. L. GAOL AND B. S. ABBAS

While it seems that standard-based file formats are good for spreadsheet usage, they
are probably too complex for simple programming. Our main consideration is the binary
format that requires us to use the spreadsheet software to edit the file. We like the spread-
sheet for modeling (mainly for user interface) and coding, but for simple programming
or revision, we prefer textual format. In some environments, for example at text-based
server where GUI is not available, running graphical spreadsheet software is not possible.
If only text-based text editors are available, textual format is the natural choice.
In addition to their native file format, many modern spreadsheet softwares support

exporting to text-based representation of the tabular data. Usually, the textual format
would be CSV file format, that defined in RFC 4180. It is text-based [18], can be edited
by any text editor, and sufficient for our domain-specific language.
Our proposed language targets the development of a web application. To make it easier

to measure, we focus on web log (blog) application. In a blog, there is a user interface,
where a series of post [1] and some static contents are displayed (a sample is illustrated
in Figure 1). Technically, these contents are saved in a database management system or
some files in a filesystem. Therefore, other than modeling the user interface, we must deal
with reading and writing to some external resources. Using a single CSV file, edited in
spreadsheet software, our proposed language provides everything from blog layout design
to simple programming construct.

Figure 1. A sample of web log (blog) user interface

For the user interface part, we propose that the layout is mapped to worksheet column
and row as our previous research [4]. However, we advance to allow cell merging because
this feature is common and available in many spreadsheet softwares. More importantly,
cell merging allows the programmer to layout closely to the final result.
Based on our internal discussions, it is easier to rule where the layout should be started

and positioned. In this case, we propose that the layout must be started at cell A1.
Sample of the layout (with some additional codes) is illustrated in Figure 2.
It is worth noting that we do not use reserved words in our language. The layout may

consist of header, content, links, and footer, but these texts are not reserved words. Page
header can be written as header, X, Y, or other literals. Our interpreter will simply treat
them as text literal if the definition for that symbol is not found.
Cell merging is actually challenging when it comes to CSV format. In Figure 2, there

is a layout where a header is spanned to 4 columns and 2 rows. In spreadsheet software,
it is clearly seen and understood. However, without additional content below the table,
for example, the saved CSV only has one row and one column. This is understandable



ICIC EXPRESS LETTERS, VOL.13, NO.12, 2019 1161

Figure 2. Simple page layout with cell merging

because cell merging information is not saved into the CSV format. After all, all we
have is a single cell. That is why we have to use some auxiliary symbol to inform the
interpreter that there is a cell merging near specific cells. We tested this idea to our tester,
and we finally came up with a dot (.). In our proposal, a dot may semantically represent
a stop or an end. Below the merged cells, we put a dot to represent that we end that
definition. The resulted CSV honors that and put number of rows as spanned. The dot
is only needed when there is no additional contents below or after the merged cells. If we
put content below the merged header, for example, content, the dot is not needed. All we
need is an extra character. Figure 2 illustrates the supported layout definition with some
merged cells.

Let us move to the almost none reserved words rule. The rule is simple: if a text (or
a symbol) is not defined later, treat it as a text literal, not a variable or a command.
Definition means the text is put somewhere else, with some parameters given. For that
purpose, one can use spreadsheet formula = [CELL]. For example, if A1 cell contains
header text, and that symbol is intended to be a variable or a command, the definition
may be put in another cell using = A1 formula. That way, a symbol is not limited to a
single word or a single character: they could be a very long text (with whitespaces), as
allowed by spreadsheet software.

We also propose that our language treats all symbols as string, more or less found in
Tcl programming language [19], although our proposal is certainly much simpler and only
scoped to web application domain. One may put some values such as 1, 2, x, y, z, and we
will treat them all as strings. Our intention is to make the language simpler and to align
with simple programming model offered by spreadsheet [9].

Treating all symbols as string in our proposal means that we have no predefined or
strict data type. If a text looks like a number and the context allows a number, we will
try to convert the text into its numerical value and act appropriately when the conversion
fails. A context is a combination of symbol definition and where the symbol applied.
One of the best examples would be in looping. One can put text 5 in a cell for looping.
Because the scope is looping and the language supports only ranged loop, the interpreter
will automatically convert the value into numeric.

As we avoid data type and reserved words (other than the dot), it was relatively tricky
to support looping or conditional statements. There is no ‘if’ syntax because ‘if’ is simply
a text literal. Or, it could be a variable or a command if it defined so. Should we use



1162 NOPRIANTO, B. SOEWITO, F. L. GAOL AND B. S. ABBAS

if function (= if) which commonly supported by modern spreadsheet software? Unfor-
tunately, in this case, we decided not to use spreadsheet functions. The main reason is
functions availability that could be different between a spreadsheet software and another.
Another reason is to avoid syntax or logic error in the usage of spreadsheet function (and
make the language prone to error and harder to use). We learn from some researches that
point to errors in spreadsheets. Originally, spreadsheets were meant for domestic usage.
However, time has proved that spreadsheets are widely used than was anticipated [20].
Errors are common, with rate from one percent or more of all formula cells [13].
That decision led us to use another construct: put a symbol in a cell and put the

parameters next to the symbol (at the right side). These parameters – along with the
context – will decide what action should be taken. Details of supported actions are listed
in Table 1. Figure 2 illustrates the usage of some actions.

Table 1. Supported actions

Context Action Param 1 Param 2 Param 3 Param 4
any looping start stop step cmd
any conditional cmd (test) cmd (if test is true)
any variable definition value
any command definition param param param
any database operation table operation filter order

From Table 1, we can see that for available actions, context is not used in current design
and probably be used in future developments. Here are details for each action.

• Looping: each of start, stop, or step should be convertible to numeric. Command
should be defined. If conversion fails or command is not defined, respective action
will not be performed.

• Conditional: will be interpreted as simple if test. If a command returns something
evaluates to true (parameter 1), a command will be run (parameter 2). Both com-
mands must be defined, otherwise the respective action will not be performed. There
is no if-then-else construct.

• Variable definition is simple and takes only one parameter: the value. If the value
is not specified, an empty value will be assigned to the variable.

• Command definition needs more explanation because it is the most complex one.
Firstly, all of these three parameters are not strictly defined. Secondly, some param-
eters may return something or nothing. And lastly, any parameter may be unused,
but a command must be defined with three parameters. To make it useful, some
parameter may be an operator (>, >=, <, <=, =, <>). Because any of its parame-
ters may be unused or undefined, a command may not be run and left as is, without
any syntax errors.

• Database operation takes four parameters. First parameter is the database table.
Second parameter is one of: select, insert, update, or delete. Third parameter is
used for filtering (where clause). Last argument is used for ordering, if applicable.
Interpreter should ignore an operation that is nonsensical.

Some commands also have predefined behaviors. For example, in header defined in Fig-
ure 2, values in parameters (such as /logo, 1, and 1) are detected whether they matched
some HTML semantics. For example, if it looks like /logo is an image declaration (com-
bined with another parameters), it will be interpreted as img HTML tag. That way, this
language may add additional features without breaking existing codes.
Because our language is simple and very specific to web application development, we

suggest that the following additional rules may make the language easier to use:



ICIC EXPRESS LETTERS, VOL.13, NO.12, 2019 1163

• Case sensitivity: case-insensitive. That way, programmers do not need to exactly
remember the case of a symbol. For example, header and HEADER are both refer
to the same symbol.

• Variable name: must not be a number and whitespace-only. Length limit is not
specified.

• Action definition must be outside the page layout table.
• Database name and connection properties are not defined and are implementation-
specific.

• For each row in user interface table, only one component (single cell or merged cells)
is supported. If more than one components are defined, it is implementation-specific
and might be ignored.

4. Interpreter Implementation. We provide an implementation as an interpreter,
integrated into SQLiteBoy (http://sqliteboy.com, https://github.com/nopri/sqliteboy).
While SQLiteBoy was originally a web-based management tool for SQLite database, it
also comes with form, report, and website features. The interpreter is integrated as a
part of SQLiteBoy, starting from version 1.74. SQLiteBoy is a free/open source software,
written in Python, in development since 2012, and consists of only a single source file
(13,000+ lines of code, version 1.74).

Because underpinning operations are handled by SQLiteBoy, our main work is mainly
divided into: user interface table recognition, symbol definition handling, and web page
generation. Scanning and parsing steps are done using CSV file parsing algorithm and
they are well served by Python CSV module.

For user interface table recognition, we can always be sure that the table is started in
first column and first row. What we care is the end of the table and how to deal with cells.
This is the algorithm used in recognizing the table and interpreting cells and merged cells
in each row.

• We iterate non-empty cells both in columns and rows to look for the dot characters.
For columns, first dot character denotes the width of the table. For rows, if the dot
character is found, row number represents the height of the table. If no dot characters
are found, recognition is done based on last non-empty cells in all columns and
rows. This might take time and this action is implementation-specific. Because this
behavior is not defined in the specification, it might be changed in future versions.

• After we get the boundaries, we convert the table into list-of-list data structure
representation. Some cleanup actions are performed, such as ignoring columns in a
row if the column number is more than one (only first column in a row is read) and
padding the list if number of columns/rows is not equal (maximum values are used).

• We iterate the list to find merge cells and build another list structure. For each
symbol found, we iterate its next rows until we find a row containing another symbol.
Number of empty rows in-between is the extra number of rows occupied in the user
interface grid. At the end of this step, we have a list (named user interface) consisting
of [<symbol>, <extra rows>] list items.

For symbol definition handling, we read the CSV file outside the range of user interface
table. For each symbol found in user interface list, we need to perform clean up action
by ignoring invalid action (based on number of parameters). This step results in a hash
table/dictionary (named symbols).

For web page generation, we use the information from user interface list and symbols
dictionary. Main HTML output is performed in an iteration. For each symbol in the
user interface list, if such symbol is defined in the dictionary, interpretation is done based
on action category. Otherwise, treat the symbol as a text literal. Interpretation might
involve another table lookup in the symbols. Nonsensical operations are also ignored.



1164 NOPRIANTO, B. SOEWITO, F. L. GAOL AND B. S. ABBAS

Figure 3. Language interpreter architecture

Additionally, as noted, some commands have predefined behaviors and they will determine
the output.
How the language interpreter works is illustrated in Figure 3. From a spreadsheet doc-

ument, the tabular data are saved into a CSV file. Through an interpreter integrated into
SQLiteBoy, front-end and back-end of a web application are generated and/or processed.
The front-end consists of HTML, CSS, and Javascript, while the back-end consists of
server side codes, backed by a database system.

5. Experiment and Result. As a specific language that is based on spreadsheet, firstly
we would like to measure the language itself for experienced spreadsheet users. By expe-
rienced, such users must use spreadsheet on a daily basis and have been using spreadsheet
software for at least 3 years. However, no programming experience is assumed. We invit-
ed 10 respondents and tasked them to define a table (with cell merging) to model a web
page. After that, we also tasked the user to define some simple actions. We measure the
time needed and number of errors. Table 2 lists the results (first round).

Table 2. Time needed and number of errors using spreadsheet to develop
a web application (first round)

Respondent Design time (minute) Number of errors
1 10 3
2 8 2
3 15 4
4 8 1
5 8 2
6 12 0
7 15 0
8 7 1
9 7 2
10 13 2



ICIC EXPRESS LETTERS, VOL.13, NO.12, 2019 1165

Table 3. Error type, fix, and language change (based on previous experiment)

Error Fix Language change

Number as variable name
None, user must change
the variable name

None

Use of reserved word for web
page section (typo, cannot re-
member the word)

Language change
No reserved words, except
for dot symbol

Use of spreadsheet functions
(syntax error, unknown func-
tion)

Language change Use parameters

Actions defined in layout table
None, user must do that
outside the table

None

Use of operator for text value Language change
Allow the operator to be
applied to text value by us-
ing its length property

Errors related to database op-
erations

Language change
Ignoring nonsensical opera-
tions

Table 4. Comparison with other programming languages

Respondent Programming language Development time (minute) Lines of code
1 PHP 30 44
2 PHP 40 39
3 Java (Servlet) 80 180
4 Java 70 120
5 Python (Standard libraries) 40 50
6 Python (Framework) 35 40
7 Python (Micro framework) 30 42
8 Perl (CGI) 40 46

We set the time needed target as 30 minutes. Because we did not reveal this information
and all of the respondents finished the task quicker, we conclude that their elapsed time
was acceptable. We were more interested with the number of errors. The errors were
reported by the simple validator and mostly related with programming activities. Table
3 lists the errors.

In order to make the language suitable and usable by regular spreadsheet user, we
changed the language appropriately to what become our proposal. We then repeat the
experiments until we finally achieved maximum time needed of 13 minutes and maximum
number of errors of 1. All done in 12 to 15 lines of code (number of rows). All of these
results were very acceptable to us, to allow us to continue with another experiment.

Based on the result, we would like to measure how the proposed language is compared
to other programming languages. We concentrated only about the basic web page gener-
ation and simple user interface, and did not measure the codes needed for underpinning
operations such as database connection or authentication. For that purpose, we invited 8
computer programmers who are familiar with web application development. They chose
their favorite language/framework and we measured development time (in minute) and
lines of code, as listed in Table 4.

We measure lines of code because based on some research, lines of code contributed
to number of bugs and software maintainability. Number of bugs vary, for example 6-16
bugs per 1000 lines of code [21]. Also, we would like to measure whether our language
offers significant less effort. In this case, compared with shortest development time (30



1166 NOPRIANTO, B. SOEWITO, F. L. GAOL AND B. S. ABBAS

minutes), our language offers significantly less time (13 minutes) with 43% ratio. Similar
comparison result was found in lines of code: 12 compared with 39 lines of code (30%
ratio).
Our latest comparison was to measure how the generated web page complies with

HTML standards. Several reasons are listed [22]. One of them could be summarized as
the more the generated web page comply with the standards, the better it may render
on more web browsers. Using the results from previous respondents, we used an external
validator service to validate whether generated web pages were standard-complaint. The
result was only 1/4 (25%) that complies with HTML standards. Our language offers near
100% HTML standard compliant because we strongly endorse this.

6. Conclusions. Based on the experiments and results, our proposed method is us-
able and useful in web application development (for blog application). Our spreadsheet-
modeled proposal offers significantly less time and lines of code, while at the same time,
resulted in HTML standard compliant codes. The usage of CSV format also makes it
easier to edit using only a text editor. For seasoned developers, it is also possible to fully
develop using only a text editor.
However, we do aware of its limitations. Compared with our research on multi platform

user interface modeling, we lose the usage of cell attributes to style the web page. We
addressed the cell merging, but lost the cell attributes and multi worksheets when we
switched to CSV file format. Another method for web page styling is certainly needed.
Additionally, while cell merging is supported, each row in user interface table can only
contain one component.
While we provide simple command, looping, and conditional statement, they are prob-

ably quite basic. For example, only one looping construct is provided. There is also no
if-then-else construct. Commands are also limited. At current design and implementa-
tion, a simple web application could be developed. However, further development may
require more advanced features.

REFERENCES

[1] M. Jazayeri, Some trends in web application development, Proc. of Future of Software Engineering
(FOSE’07), pp.199-213, 2007.

[2] L. S. R. Rosen and L. Shklar, Web Application Architecture: Principles, Protocol and Practices,
John Wiley, Hoboken, NJ, 2009.

[3] M. Mernik, J. Heering and A. M. Sloane, When and how to develop domain-specific languages, ACM
Computing Surveys (CSUR), vol.37, no.4, pp.316-344, 2005.

[4] Noprianto, B. Soewito, F. L. Gaol and B. S. Abbas, Multiplatform application user interface design
based on spreadsheet, AdMITS, 2017.

[5] Tiobe Index, https://www.tiobe.com/tiobe-index/, Accessed on 09-Mar-2019.
[6] A. Van Deursen and P. Klint, Domain-specific language design requires feature descriptions, Journal

of Computing and Information Technology, vol.10, no.1, pp.1-17, 2002.
[7] A. Kurniawan, B. S. Abbas, A. Trisetyarso and S. M. Isa, Classification of web backdoor malware

based on function call execution of static analysis, ICIC Express Letters, vol.13, no.6, pp.445-452,
2019.

[8] A. Van Deursen, P. Klint and J. Visser, Domain-specific languages: An annotated bibliography,
ACM Sigplan Notices, vol.35, no.6, pp.26-36, 2000.

[9] B. A. Nardi and J. R. Miller, The spreadsheet interface: A basis for end user programming, Hewlett-
Packard Laboratories, 1990.

[10] Frequently Asked Questions – Calc, https://wiki.documentfoundation.org/faq/calc/022, Accessed on
09-Mar-2019.

[11] Gtkgrid: Gtk+ 3 Reference Manual, https://developer.gnome.org/gtk3/stable/gtkgrid.html, Ac-
cessed on 09-Mar-2019.

[12] Qgridlayout Class, https://doc.qt.io/archives/qt-4.8/qgridlayout.html, Accessed on 09-Mar-2019.
[13] R. R. Panko, What we know about spreadsheet errors, Journal of Organizational and End User

Computing (JOEUC), vol.10, no.2, pp.15-21, 1998.



ICIC EXPRESS LETTERS, VOL.13, NO.12, 2019 1167

[14] E. Benson, A. X. Zhang and D. R. Karger, Spreadsheet driven web applications, Proc. of the 27th
Annual ACM Symposium on User Interface Software and Technology, pp.97-106, 2014.

[15] K. S. P. Chang and B. A. Myers, Creating interactive web data applications with spreadsheets, Proc.
of the 27th Annual ACM Symposium on User Interface Software and Technology, pp.87-96, 2014.

[16] Noprianto, B. Soewito, F. L. Gaol, B. S. Abbas, S. W. H. L. Hendric and A. Trisetyarso, Perkedel:
Spreadsheet-inspired domain-specific programming language for data entry, IEEE CyberneticsCom,
2017.

[17] File Formats – Apache Openoffice Wiki, https://wiki.openoffice.org, Accessed on 09-Mar-2019.
[18] RFC 4180, https://www.ietf.org/rfc/rfc4180.txt, Accessed on 09-Mar-2019.
[19] Everything is a String, https://wiki.tcl-lang.org/page/everything+is+a+string, Accessed on 09-Mar-

2019.
[20] M. Csernoch and P. Biró, Spreadsheet misconceptions, spreadsheet errors, in Belvedere Meridionale,

Szeged, 2014.
[21] A. S. Tanenbaum, J. N. Herder and H. Bos, Can we make operating systems reliable and secure?,

Computer, vol.39, no.5, pp.44-51, 2006.
[22] Why Validate?, https://validator.w3.org/docs/why.html, Accessed on 09-Mar-2019.


