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Abstract. BOW (Bag-of-Word) model is one of the most popular methods for image
classification which represents an image as an orderless collection of local descriptors.
Although the BOW is an oversimplified and effective method, it discards the spatial infor-
mation and induces the redundant information of descriptors. To overcome these weak-
nesses, we propose an improved algorithm with edge-SIFT (Edge Scale-Invariant Feature
Transform) and SPM (Spatial Pyramid Matching) method. First, edge-SIFT descriptors
are extracted from an edge image obtained after applying multi-scale Gabor filters to a
color image. Next, spatial visual histograms are constructed by using SPM model. Fi-
nally, image classification is realized by utilizing SVM (Support Vector Machine) to train
and test three benchmark datasets: Caltech101, Caltech256 and CompCars to conduct a
quantitate evaluation of the proposed algorithm. Experimental results show that the pro-
posed approach outperforms the similar algorithms.
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1. Introduction. Image classification is able to automatically assign an unknown image
to a category according to its visual contents, which has been one of popular research
directions in pattern recognition and computer vision [1]. Automatic image classification
is capable of quick and efficient query and management of large-scale image databases. It
not only saves labor costs, but also ensures high classification accuracy [2].

Feature extraction is one of the most critical steps in image classification, so that
different kinds of descriptors have been widely studied. One of renowned examples is
Bag-of-Word (BOW) model proposed by Li et al. [3]. This approach represents an image
as a collection of visual words, and the image descriptor is generated based merely on
the number of occurrences of some particular visual appearances within the image [4].
However, it suffers from several drawbacks, including the limited semantic description of
local descriptors and missing of efficient spatial weights [5]. To overcome these problems,
Lazebnik et al. proposed a Spatial Pyramid Matching (SPM) method, which partitions
an image into increasingly fine sub-regions and computes histograms of local features
extracted from inside each sub-region [6]. The resulting has made a remarkable success
on a range of image classification.

The conventional SPM approach constructs a visual histogram by clustering all local
features of training images with k-means algorithm [7]. In general, Scale-Invariant Feature
Transform (SIFT) [8] descriptor is chosen as local descriptors since it is invariant to image
scale, rotation, variation in illumination and moreover it provides robust matching by
geometric transformation [9]. However, it is hard to achieve satisfactory results on big
datasets with high sample sizes and dimensions [10]. The dense SIFT algorithm has good
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classification results by obtaining descriptors from each location and utilizing a sampling
procedure to reduce the computation cost in SIFT algorithm [11].

The information is relevant when the descriptors are extracted just from the region of
interest or foreground. The data extracted from the background do not provide relevant
information to the image description, so extracting SIFT descriptors from the whole image
may result in suboptimal classification [12]. The Gabor filters, whose kernels are similar
to the response of the two-dimensional receptive field profiles of the mammalian simple
cortical cell, and exhibit the desirable characteristics of spatial locality, spatial frequency
and orientation selectivity [13]. And the multi-scale Gabor filter utilizes the gray change
information of the pixel and its surrounding pixels to fuse multi-scale image information.
In this paper, the edge-SIFT descriptors are extracted by using dense SIFT descriptors
from edge image, which are obtained by multi-scale Gabor filter.

According to the above discussion, an improved algorithm is proposed for image clas-
sification incorporating edge-SIFT with SPM. In detail, the proposed algorithm can be
delineated like this. First, a color image is converted to edge image by exploiting multi-
scale Gabor filters. Second, an edge-SIFT feature matrix is obtained from the edge image.
Then, a visual histogram is built by SPM. Finally, the test samples are classified by Sup-
port Vector Machine (SVM) [14] classifier. By jointly applying these advanced feature
extraction techniques, the proposed algorithm is able to improve the accuracy of image
classification considerably on the three different datasets. A detailed explanation is pro-
vided for each stage in Section 2 and a number of experimental results are illustrated in
Section 3, followed by our conclusion.

2. Proposed Algorithm. Edge-SIFT descriptors are proposed by the fact that the dis-
criminative descriptors are able to improve the classification performance. The generation
of the proposed approach contains two sequential steps. First, an original image is con-
verted into edge image by multi-scale Gabor filters. Then, the Edge-SIFT descriptors
are generated by utilizing dense SIFT algorithm on the edge image. The proposed algo-
rithm makes use of textural and spatial information of edge-SIFT and SPM in order to
select optimal interest points for good performance on image classification, which can be
partitioned into four parts as shown in Figure 1. In the next subsections, the proposed
algorithm is described in more detail.

Figure 1. Block diagram of the proposed algorithm
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2.1. Multi-scale Gabor filters. The redundant information is caused by employing
SIFT descriptors to extract features from the whole image. Due to the fact that the
Gabor filter has scale and orientation tunable property, it is able to extract effective
textural image information for classification. In the spatial domain, a 2D Gabor filter is a
Gaussian kernel function modulated by a sinusoidal plane wave. The imaginary of Gabor
filter can be defined as:
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where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, γ and η are acuteness along the x-axis
direction and y-axis direction, f is the central frequency of the filter, and θ is the angle
which the modulated plane wave and the Gaussian principal axis rotate counter clockwise.
Since a large-scale filter can smooth the image and suppress the noise, it tends to lose
detailed grayscale information. Otherwise, small-scale filters are capable of extraction of
the detailed grayscale information, while they are sensitive to noises, as a consequence,
multi-scale Gabor filters with 3 spatial scales and 16 orientations are employed to extract
image edge information.

A set of discrete multi-scale Gabor imaginary filters are designed by uniform sampling
on direction with θ = [0, π]. The proposed filters can be built as:
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where n′ = −m sin θk + n cos θk, m′ = m cos θk + n sin θk, θk = πk
K

, k = 0, 1, . . . , K − 1, K
is the number of samples on direction, θk is the angle of the k-th direction, fs represents
the central frequency of s = {0, 1, 2} scale. For the input image I(m, n), the imaginary
of Gabor filters is obtained on θk direction as follows:

ζ(m,n; s, k) = I(m,n) ⊗ φ(m,n; s, k) =
∑
mx

∑
ny

I(m − mx, n − ny)φ(m,n; s, k) (3)

Edge images are extracted by utilizing Canny, Prewitte operators and a multi-scale Gabor
algorithm is proposed. The experimental results shown in Figure 2 indicate that the multi-
scale Gabor filters achieve the best edge image.

(a) (b) (c) (d)

Figure 2. The example of the edge image obtained by Canny, Prewitte
and the proposed multi-scale Gabor algorithm: (a) grayscale image, (b)
Canny edge image, (c) Prewitte edge image, and (d) multi-scale Gabor edge
image

2.2. Dense SIFT descriptors. SIFT is a robust descriptor to characterize local gradient
information of image pixels. The extended dense SIFT descriptor is used to detected
interest points at the dense grids. Owing to omitting the process of constructing Gaussian
differential scale space and detecting scale spatial extreme points, the computational
complexity is reduced. Dense SIFT has been shown to lead to better performance for
various tasks [15]. In this work, edge-SIFT descriptors are extracted from an edge image
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by using dense SIFT. The process for extracting edge-SIFT features from an edge image
can be divided into three steps. First, the edge image is smoothed by using Gaussian filter.
Second, the gradient and angle are calculated from the entire image. Finally, the gradient
oriented histograms of 16 × 16 pixel patches are computed over a grid with spacing of 8
pixels, resulting in a 128-dimensional vector. The goal of our work is to perform image
classification based on this edge-SIFT descriptor.

2.3. Edge-SPM visual histograms. Lazebnik et al. [6] proposed Spatial Pyramid
Matching (SPM), which divides each image into 2l×2l blocks in different scales l = 0, 1, 2,
and computes the histograms of local features inside each block, followed by concatenating
all histograms to represent the image. Let X and Y be two sets of vectors in d-dimensional.
Then, the d-dimensional feature space is divided into hierarchical subsets at resolutions
l = 0, . . . , L, level l having 2l cells along each dimension, so a total of D is equal to 2dl

cells.
Let H l

x and H l
y denote the histograms of X and Y at this resolution. And, the similarity

of two sets of vectors is denoted by histogram intersection function as follows:
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The feature spaces are refined along with their increased scale, and the matching between
features is more precise. The number of matches at level l also includes all the matches
found at the finer level l + 1. Therefore, the number of new matches located at level l is
given by I l − I l+1, and the weight is set to 1

2L−l with level l. The pyramid match kernel
is denoted as:
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In this paper, the edge-SPM visual histograms are represented as an image by weighted
multi-resolution histograms, which are obtained by iteratively splitting the training images
into 2l×2l (l = 0, 1, 2) blocks with variant scales, and computing the feature histograms by
using edge-SIFT descriptors in each block, followed by generating edge feature histograms
through splicing the sub-regions.

2.4. SVM classifier. SVM constructs a hyperplane to maximize the margin between
different classes. The distance between the support vector and the classifier is indicated
by the margins. SVM can transform a nonlinear separable problem into a linear separable
problem with different kernel functions. In the experiments, the dimension of edge-SPM
visual histograms is 6400. The edge-SIFT visual histograms are fed into SVM classifier.
Finally, image classification results from SVM classifier.

3. Experimental Results and Analysis. Extensive experimental results are presented
to evaluate the performance of the proposed method. A variety of experiments are con-
ducted on three diverse datasets: Caltech101, Caltech256 and Comprehensive Cars (Com-
pCars). The experiments are carried out on the Intel i5-3230M, 2.6GHz, RAM 8GB PC
using MATLAB R2014b. Image classification is carried out with the support vector ma-
chine model – LibSVM [14] trained using Radial Basis Function (RBF) and Histogram
Intersection Kernel (HI-K). In this experiment, accuracy rate acts as an essential evalua-
tion index of classification performances. In general, the higher accuracy rate is, the better
classification performances are. The accuracy rate (accuracy) is calculated as follows:

Accuracy =
TP + TN

P + N
(6)

where TP (true positives) and TN (true negatives) are the number of correctly detected
positive and negative samples respectively, P +N is the total number of samples. Table 1
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Table 1. Comparison of RBF and HI-K kernel function

Dataset RBF HI-K
Caltech-101 87.00% (87/100) 94.00% (94/100)
Caltech-256 78.89% (71/90) 87.78% (79/90)

CompCars-12 61.11% (110/180) 87.22% (157/180)
Mazda-8 60.83% (73/120) 85.00% (102/120)

lists the experimental results of the proposed algorithm using two libSVM kernels: RBF
and HI-K on various datasets. As observed from Table 1, the performance of the HI-K
outperforms the RBF, so this experiment selects HI-K as the kernel function for image
classification.

3.1. The Caltech-101 dataset. The Caltech-101 [16] dataset contains 9144 images of
102 classes, including a background category. There exists significant deformation among
different objects from the identical category. The proposed algorithm is tested on ten
categories of objects selected from Caltech-101 dataset. For each category, the first 30
images are chosen as training images and the last 10 images as testing images. To verify
the performance of the proposed algorithm, it is compared with BOW and SPM algorithm.
The results of the classification are given in Figure 3. It can be derived from Figure 3 that
the proposed algorithm achieves higher accuracy of the 6 classes of images than the BOW
algorithm. For the two classes of ant and pigeon, the proposed algorithm is improved
by 0.3 and 0.2 compared with the SPM algorithm. This is due to the fact that multi-
scale Gabor filters are adopted, which optimize the optimum matching points. Moreover,
average value of classification accuracy is 94% for our approach, which is 11% and 5%
higher than the BOW and SPM algorithm respectively.

Figure 3. Comparison of three classification algorithms on Caltech-101 dataset

3.2. The Caltech-256 dataset. The Caltech-256 [17] dataset holds 30607 images falling
into 257 classes, including a clutter category. It is an expansion of Caltech-101, and there
are many higher intra-class variations and inter-class similarity. The sampled images
contain nine categories. For each category, the first 30 images are chosen as training images
and the last 10 images as testing images. Figure 4 reveals the classification performance
of the proposed method, and it is compared with BOW and SPM algorithm on Caltech-
256 dataset. The average values of classification accuracy for three methods are 87.78%,
85.60% and 86.67% respectively. The classification accuracy of each category is all higher
than 70.00%, and the maximum value is 100.00%. These mean the collected template set
has a certain discriminative ability, and the trained model has better robustness.
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Figure 4. Comparison of three classification algorithms on Caltech-256 dataset

3.3. The Comprehensive Cars dataset. The CompCars [18] dataset contains 214,345
vehicle images from two scenarios: web-nature and surveillance-nature, which provides a
comprehensive platform to validate the effectiveness of computer vision algorithms. The
surveillance-nature data contains 50,000 car images. The web-nature dataset with 161
types of cars contains 1,687 car models. In a total of 136,727 images are the entire car
and 27,618 images are the car parts images. First, 600 images with 12 car types are
selected from web-nature dataset to evaluate the performance of the proposed algorithm,
including Porsche, East-Wind, Fisher, Dacia, Zenvo and so on. Then, eight diverse models
of the Mazda brand in the CompCars web-nature dataset are employed in this experiment.
Sample images are listed in Figure 5. For each category, the first 35 images are chosen as
training images and the last 15 images as testing images.

Mazda-Hazumi Mazda2 Mazda3 MazdaCX-9

Mazda-Axela Mazda-zoom MazdaCX-7 Mazda8

Figure 5. Eight various models of the Mazda brand in the CompCars dataset

As seen from Figure 6 the proposed algorithm achieves high accuracy on the discrimi-
native categories, such as 93.00% accuracy for Fisker. The average classification accuracy
is 87.22%. Table 2 illustrates the results of classification performance on eight diverse
models of Mazda, in which the accuracy of only one vehicle model is less than 70.00%
and their average accuracy is 85.00%. Since the contour similarity of the identical brand
model is high, there are interferences to the classification. As a consequence, a new feature
description method is required to explore for the classification of such types of images in
the future work, in order to improve the classification discriminability.

4. Conclusion. In this paper, an improved image classification algorithm is presented by
integrating multi-scale Gabor filters, edge-SIFT with SPM. The proposed method adopts
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Figure 6. Confusion table for 12 car types from CompCars dataset

Table 2. Results by our method for eight diverse models of Mazda from
CompCars dataset

Car types Accuracy Car types Accuracy
Mazda-Hazumi 100.00% Mazda-Axela 93.00%

Mazda3 93.00% Mazda-zoom 87.00%
MazdaCX-7 87.00% Mazda2 80.00%
MazdaCX-9 80.00% Mazda8 60.00%

multi-scale Gabor filters to extract foreground information from edge image so as to re-
duce the redundancy information of the whole image. Moreover, the edge-SIFT instead
of conventional dense SIFT algorithm is applied to SPM model. Experimental results
on three distinct datasets indicate the proposed algorithm achieves better performance
than BOW and SPM algorithm. Furthermore, the proposed method improves the accu-
racy and robustness of image classification significantly. In the future work, we focus on
improvement of classification accuracy on low discriminability category.
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