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Abstract. A complex control program for an omnidirectional rehabilitative training ro-
bot (ORTR) with actuator fault and center of gravity shift was proposed in this paper.
Firstly, a stochastic nonlinear model was constructed for the ORTR with structure param-
eter uncertainty based on stochastic theory. And then, by combining the merits of passive
fault tolerant control (PFTC), active fault tolerant control (AFTC), and redundant fault
tolerant control (RFTC), the semi-active redundant fault tolerant control (SRFTC) was
proposed and applied to the ORTR. Finally, simulations were conducted to show the de-
signed controller can synchronously resolve the problems of trajectory tracking, center of
gravity shift, and actuator fault.
Keywords: Semi-active fault tolerant control, Center of gravity shift, Trajectory track-
ing

1. Introduction. It is well known that there are many random disturbances and ran-
dom parameter uncertainties in robot systems, which would evidently affect the motion
performance of robots. In recent years, with the improvement and development of modern
stochastic control theory, robot systems with random uncertainties and disturbances have
turned into a hot topic of scholars’ attention. [1] proposed an adaptive control method for
a flexible joint robot with random noises. [2] investigated a feedback path tracking control
technique for a random Lagrangian system. [3] presented a method of model construction
for stochastic Lagrangian control system and brought up an adaptive tracking controller.
It is worth noting that the above-mentioned stochastic models just take the random noise
of input channel into consideration. Nevertheless, the internal structure of robots still
includes more random parameters such as the shift in gravity center of ORTR [4].

In addition, mobile robots inevitably have faults during their operation, which will
cause the performance of robot system to degrade or even become unstable. Recently, re-
search results on fault tolerant control for robot have made great progress, such as passive
fault tolerant control (PFTC), active fault tolerant control (AFTC), and redundant fault
tolerant control (RFTC). However, all of them have the advantages and disadvantages.
For the PFTC, the fault information is considered as a disturbance, but this approach
requires partial knowledge of fault, such as the upper bound of disturbance, which limits
its applications [5]. AFTC is hardly applied to mobile robot systems, because it requires
accurate fault information obtained from fault diagnosis, and the sensor is hardly installed
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on the motor drive of mobile robot. RFTC is a very effective fault-tolerant approach by
switching a damaged drive to a normal one, but in the process of drive switching, the
states of system would be changed suddenly, which is not allowed in precise robots, such
as ORTR [6]. As for the reasons above, we invent a semi-active redundant fault toler-
ant control (SRFTC), which is quite fit to apply into the precision mechanical system.
The SRFTC, as well as AFTC and RFTC, can eliminate the impact of actuator failures
more effectively than PFTC. Moreover, SRFTC can maintain the states of system to be
changed steady, but does not require accurate fault value from fault diagnosis sensor, to
insure the safety of training process. The basic condition of SRFTC system includes: 1)
the mechanical system has redundant drives; 2) the fault of actuator can be discovered,
but the fault information need not be diagnosed. The SRFTC system will use the dis-
turbance rejection technology to the redundant normal actuator, and mechanical system
can continue to work without the interruption in fault actuator.

In this paper, we will investigate an ORTR and the main tasks are described as the
following. 1) By converting the random structural parameters into random disturbances,
we construct an appropriate stochastic model to describe the movement of ORTR with
the center of gravity shift. 2) In order to design an SRFTC, we first detected which
actuator is broken, and separated the broken actuator from the control vector. Then, in
order to adapt the broken actuator, we design a corresponding adaptive law. 3) With the
application of SRFTC to the ORTR, the trajectory tracking error system is exponentially
practically stable in mean absolute. Simulation results show the efficiency of the controller.

2. Stochastic Model Construction for the ORTR with Center of Gravity Shift.
Structure of ORTR is shown in Figure 1, and Figure 2 presents reference frame of ORTR
[4].

Figure 1. Structure of ORTR Figure 2. Reference frame of ORTR

In Figure 2, Σ(x,O, y) is the world-coordinate; Σ(x′, C, y′) is the local-coordinate; v is
the speed of ORTR; vi (i = 1, 2, 3, 4) are the speeds of omniwheels; fi are the forces on
each omniwheels; G is the center of gravity of ORTR; r0 is the distance between gravity
center G and geometric center C with a load; α is the included angle between x′-axis and v;
β is the included angle between x′-axis and r0; L is the distance between geometric center
of ORTR and apiece omniwheels; li are the distances between gravity center and apiece
omniwheels; θi are the angles between x′-axis and center points of apiece omniwheels; ϕi

are the angles between x′-axis and li.
The dynamic model of ORTR is presented below [4],

M0KẌ(t) +M0K̇Ẋ(t) = B(θ)u(t) (1)
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where

M0 = diag
{
M +m,M +m, I0 +mr2

0

}
, X = [x(t), y(t), θ(t)]T , u(t) = [f1, f2, f3, f4]

T ,

K =

 1 0 p
0 1 q
0 0 1

 , B(θ) =

 − sin θ1 sin θ2 sin θ3 − sin θ4

cos θ1 − cos θ2 cos θ3 cos θ4

λ1 −λ2 −λ3 λ4

 ,
[
p
q

]
=

[
[(λ1 − λ3) sin θ + (λ2 − λ4) cos θ]/2
[(λ2 − λ4) sin θ − (λ1 − λ3) cos θ]/2

]
, λi = li cos(θi − ϕi), (i = 1, 2, 3, 4).

Here, M is the mass of ORTR; m is the user’s equivalent mass; I0 is the inertia mass
of ORTR. mr2

0 is the user’s inertia mass. f1, f2, f3, and f4 are the control input; r0
and λ1, λ2, λ3, λ4 are the random parameters caused by center of gravity shift. θ is the
angle between the center point of the 1st omniwheel and x′-axis, θ = θ1, then we have
θ2 = θ + π/2, θ3 = θ + π, and θ4 = θ + 3π/2. In the consideration of λ1 + λ3 = 2L and
λ2 + λ4 = 2L, we extract the random parameters r0, λ1, λ2, λ3, λ4 from (1) to get the
stochastic model.

Ẍ(t) = M−1
1 B∗(θ)u(t) +M−1

1 Nξ(t) (2)

where

M1 = diag {M +m,M +m, I0} , B∗(θ) =

 − sin θ1 sin θ2 sin θ3 − sin θ4

cos θ1 − cos θ2 cos θ3 cos θ4

L L L L

 ,
N =

 −(M +m) sin θ θ̇2(M +m) sin θ −θ̇2(M +m) cos θ −(M +m) cos θ 0

(M +m) cos θ −θ̇2(M +m) cos θ −θ̇2(M +m) sin θ −(M +m) sin θ 0
0 0 0 0 1

 ,
ξ =

[
θ̈(λ1 − L), (λ2 − L), (λ1 − L), θ̈(λ2 − L),(
(λ1 − L)(f1 + f3) − (λ2 − L)(f2 + f4) − θ̈mr2

0

)]T
.

In order to design the fault tolerant control that accounts for the actuator failure
existing in input channels, a uniform actuator fault model [6] is introduced which would
be used for separating the fault actuator.

u(t) = (I − ρ∗)u∗(t) = [u∗i (t) (1 − ρi)∆u
∗
i (t)]

T , i = 1, 2, 3, 4 (3)

and u∗(t), B∗(θ) can be broken down into,

u∗(t) = [u∗i (t) ∆u∗i (t)]
T (4)

B∗(θ) = [B∗
1(θ) B∗

2(θ)] (5)

where ρ∗ can be described by ρ∗ = diag[ρ1, ρ2, ρ3, ρ4]; 0 ≤ ρi ≤ 1 is an unknown constant;
the index i denotes the ith fault mode. u∗i (t) are well-functioning actuators control inputs
and ∆u∗i (t) is fault actuator input force. B∗

1(θ) is the homologous coefficient matrix of
well-functioning input u∗i (t), and B∗

2(θ) is the homologous coefficient matrix of fault input
∆u∗i (t). Then we separate the fault input ∆u∗i (t) (ρi ̸= 0) from (2).

Ẍ(t) = M−1
1 B∗(θ)u(t) +M−1

1 Nξ(t)

= M−1
1 B∗

1(θ)u
∗
1(t) +M−1

1 B∗
2(θ)(1 − ρi)∆u

∗
1(t) +M−1

1 Nξ(t)

= M−1
1 B∗

1(θ)u
∗
1(t) +M−1

1

[
(1 − ρi)B

∗
2(θ)

...N
][

∆u∗
T

1 (t)
...ξT (t)

]T
(6)

Assumption 2.1. The random parameter uncertainties and the random fault input force[
∆u∗

T

1 (t)
...ξT (t)

]T
are white noises.
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Assumption 2.2. As M−1
1 is bounded, there are nonnegative parameters h1 and h2, such

that

0 ≤ h1I3×3 ≤M−1
1 ≤ h2I3×3 (7)

Assumption 2.3. Consider angular velocity θ̇ is bounded and the definition of the Frobe-
nius norm, there exist unknown nonnegative constants h3 and h4, and smooth positive
functions ψ1, ψ2 such that,

[(1 − ρi)B
∗
2(θd(t))

...N(θd(t))]
2
F

= Tr
{
(1 − ρi)B

∗
2(θd(t))(1 − ρ)B∗

2(θd(t))
T
}

+ Tr
{
N(θd(t))N(θd(t))

T
}

= (1 + L2)(1 − ρi)
2 +

[
2θ̇4

d(t)(M +m)2 + 2(M +m)2 + 1
]

≤
(
1 + L2

)
(1 − ρi)

2 + h3ψ1 (8)∥∥[(1 − ρi)B
∗
2(θ)

...N(θ)] − [(1 − ρi)B
∗
2(θd(t))

...N(θd(t))]
∥∥2

F
≤ h4ψ2

(
eT
2 e2

)2
(9)

In view of Assumption 2.1, by replacing
[
∆u∗

T

1 (t)
...ξT (t)

]T
with “dB/dt”, the Stratono-

vich stochastic differential equation of (6) is achieved,

dẊ(t) = M−1
1 B∗

1(θ)u
∗
1(t)dt+M−1

1 [(1 − ρi)B
∗
2(θ)

...N ] ◦ dB (10)

where B is a 6-dimensional independent Wiener process. We denote [(1 − ρi)B
∗
2(θ)

...N ] =
[αij]i×j (i = 1, 2, 3; j = 1, 2, . . . , 6). The Wong-Zakai correction term equals,

1

2



6∑
j=1

(
α1j ·

∂α1j

∂ẋ(t)
+ α2j ·

∂α1j

∂ẏ(t)
+ α3j ·

∂α1j

∂θ̇(t)

)
6∑

j=1

(
α1j ·

∂α2j

∂ẋ(t)
+ α2j ·

∂α2j

∂ẏ(t)
+ α3j ·

∂α2j

∂θ̇(t)

)
6∑

j=1

(
α1j ·

∂α3j

∂ẋ(t)
+ α2j ·

∂α3j

∂ẏ(t)
+ α3j ·

∂α3j

∂θ̇(t)

)


=

 0
0
0

 (11)

So, Itô stochastic differential equation of the ORTR with uniform input fault is ob-
tained,

dẊ(t) = M−1
1 B∗

1(θ)u
∗
1(t)dt+M−1

1

[
(1 − ρi)B

∗
2(θ)

...N
]
dB (12)

The power spectral density of white noise
[
∆u∗

T

1 (t)
...ξT (t)

]T
is supposed to be Σ/2π,

i.e., the fact dB = Σdw holds. Then, stochastic model with random shift in the center of
gravity and random fault input is obtained as

dẊ(t) = M−1
1 B∗

1(θ)u
∗
1(t)dt+M−1

1

[
(1 − ρi)B

∗
2(θ)

...N
]
Σdw (13)

3. Semi-Active Redundant Fault Tolerant Control. In this section, we aim to de-
sign an SRFTC method that can track a designed trajectory when one wheel actuator
is in fault. Xd(t) is the desired trajectory, and X(t) is the actual trajectory of ORTR;
therefore, tracking errors are defined.

e1 = X(t) −Xd(t) = [x(t) − xd(t), y(t) − yd(t), θ(t) − θd(t)]
T (14)

e2 = ė1 + c1e1 = Ẋ (t) − Ẋd (t) + c1e1 (15)

where c1 > 0 is a design parameter.
Combining (14) and (15) with (13), we arrive the following tracking error system,

de1 = (−c1e1 + e2)dt, (16)
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de2 =
[
M−1

1 B∗
1
u∗1(t) − Ẍd(t) − c21e1 + c1e2

]
dt+M−1

1 [(1 − ρi)B
∗
2(θ)

...N ]Σdw (17)

Suppose that ∆̂ is the estimate of ∆ = 1/h1 with the estimate error ∆̃ = ∆̂−∆ and ĥ

is the estimate of h with the estimate error h̃ = ĥ− h, where h will be designed later; ρ̂i

is the estimate of ρi with the estimate error ρ̃i = ρ̂i − ρi.
Define the Lyapunov function as,

V =
2∑

i=1

(
eT

i ei

)2
/4 + h1∆̃

2/(2γ1) + h̃2/(2γ2) + ρ̃2
i /(2γ3) (18)

where γ1 > 0, γ2 > 0, γ3 > 0. The infinitesimal generator of V (x, t) equals,

LV (x, t)

= Vt(x, t) + Vx(x, t)f + Tr
{
gTVxx(x, t)g

}/
2

= − c1e
T
1 e1e

T
1 e1 + eT

1 e1e
T
1 e2 + eT

2 e2e
T
2

(
M−1

1 B∗−1

1 u∗1(t)
)

− c21e
T
2 e2e

T
2 e1 + c1e

T
2 e2e

T
2 e2 − eT

2 e2e
T
2 Ẍd

+ Tr
{
ΣT
[
(1 − ρi)B

∗
2(θ)

...N
]T
M−1

1

(
2e2e

T
2 + eT

2 e2I
)
M−1

1

[
(1 − ρi)B

∗
2(θ)

...N
]
Σ
}/

2

+ h1∆̃
˙̂
∆/γ1 + h̃

˙̂
h/γ2 + ρ̃i

˙̂ρiγ3 (19)

Using Young’s inequality in the right-hand terms of (19), we have,

eT
1 e1e

T
1 e2 ≤ c1

(
eT
1 e1

)2
/4 + 27

(
eT
2 e2
)2
/
(
4c31
)

(20)

−c21eT
2 e2e

T
2 e1 ≤ c1

(
eT
1 e1
)2
/4 + 3c

7/3
1

(
eT
2 e2
)2
/4 (21)

−eT
2 e2e

T
2 Ẍr ≤ 3

(
eT
2 e2
)2
/
(
4ε1/3

)
+ εẌ4

d/4 (22)

where ε>0 is a design parameter. Then, we design the well-functioning control u∗1(t) as,

u∗1(t) = −B∗−1
1 e2∆̂u (23)

where u > 0, one has B∗
1u

∗
1(t) = −e2∆̂u. According to Equation (19), it leads to,

eT
2 e2e

T
2

(
M−1

1 B∗
1u

∗
1(t)
)

= −eT
2 e2e

T
2M

−1
1 e2∆̂u

≤ −h1

(
eT
2 e2

)2
∆̂u

= −
(
eT
2 e2

)2
u− h1∆̃

(
eT
2 e2
)2
u (24)

Utilising the mean value inequality, from Assumption 2.3, one obtains,

[(1 − ρi)B
∗
2(θ)

...N(θ)]2F

≤ 2
∥∥[(1 − ρi)B

∗
2(θ)

...N(θ)
]
−
[
(1 − ρi)B

∗
2(θd(t))

...N(θd(t))
]∥∥2

F

+ 2
[
(1 − ρi)B

∗
2(θd(t))

...N(θd(t))
]2
F

= 2
(
1 + L2

)
(1 − ρi)

2 + 2h3ψ1 + 2h4ψ2

(
eT
2 e2
)2

(25)

which together with (10) leads to,∥∥M−1
1

[
(1 − ρi)B

∗
2(θ)

...N(θ)
]
Σ
∥∥2

F

≤ h2
2

[
2(1 + L2)(1 − ρi)

2 + 2h3ψ1 + 2h4ψ2

(
eT
2 e2
)]

∥Σ∥2
F

≤ h4
2 ∥Σ∥4

F

/
2 + 2(1 + L2)2(1 − ρi)

4 + 2h2
2h3 ∥Σ∥2

F ψ1 + 2h2
2h4 ∥Σ∥2

F ψ2

(
eT
2 e2
)

(26)
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Further, we have (1 − ρi)
4 ≤ (1 − ρi) ≤ 1 for 0 ≤ ρi ≤ 1. According to Young’s

inequality, the definition of the Frobenius norm, (26) and (19), the following inequality is
obtained,

Tr
{

ΣT [(1 − ρi)B
∗
2(θ)

...N(θ)]TM−1
1

(
2e2e

T
2 + eT

2 e2I
)
M−1

1 [(1 − ρi)B
∗
2(θ)

...N(θ)]Σ
}/

2

≤ 3h4
2 ∥Σ∥4

F

(
eT
2 e2
)
/4 + 3

(
1 + L2

)2
(1 − ρi)

4
(
eT
2 e2
)

+ 3h2
2h3 ∥Σ∥2

F ψ1

(
eT
2 e2
)

+ 3h2
2h4 ∥Σ∥2

F ψ2

(
eT
2 e2
)2

≤ (eT
2 e2)

2ψh+ 33/8 + 9
(
1 + L2

)4
(1 − ρi)

(
eT
2 e2

)2
/8 (27)

where h = max
{
3h2

2h4 ∥Σ∥2
F , 9h

8
2 ∥Σ∥8

F /8, 9h
4
2h

2
3 ∥Σ∥4

F /8
}

and ψ = ψ2 + ψ2
1 + 1 > 0.

Substituting (20)-(27) into (19), one leads to,

LV (x, t)

≤ −c1
2

(
eT
1 e1

)2
+
(
eT
2 e2
)2( 27

4c31
− u+

3c
7/3
1

4
+ c1 +

3

4ε1/3
+

9

8

(
1 + L2

)4
(1 − ρ̂i) + ψĥ

)
+

1

γ1

h1∆̃
(
−γ1

(
eT
2 e2

)2
u+

˙̂
∆
)

+ h̃
(
−γ2ψ

(
eT
2 e2

)2
+

˙̂
h
)/

γ2

+ ρ̃i

(
˙̂ρi +

9

8
γ3

(
1 + L2

)4 (
eT
2 e2
)2)/

γ3 + εẌ4
d(t)/4 + 33/8 (28)

Defining the function u = c2/4+27/(4c31)+3c
7/3
1 /4+c1+3/

(
4ε1/3

)
+9 (1 + L2)

4
(1 − ρ̂i)/8

+ψĥ with c2 > 0, c = min(2c1, c2), d = εẌ4
d(t)/4 + 33/8. The adaptive laws are designed

as,
˙̂
∆ = γ1ū

(
eT
2 e2

)2
(29)

˙̂
h = γ1ψ

(
eT
2 e2

)2
(30)

˙̂ρi = −9γ3

(
1 + L2

)4 (
eT
2 e2

)2
/8 (31)

Substituting (18) and (29)-(31) into (28), one leads to,

LV (x, t) ≤ −cV (x, t) + d (32)

4. Stability Analysis.

Theorem 4.1. For the stochastic model of ORTR with center of gravity shift and random
fault input, the SRFTC and adaptive laws are designed such that, the closed-loop trajectory
tracking error system is exponentially practically mean absolute stable for initial values
e1(t0) ∈ Rn, e2(t0) ∈ Rn. The tracking errors e1(t) and ė1(t) satisfy,

lim
t→∞

E |e1(t)| ≤ (4d/c)1/4 (33)

lim
t→∞

E |ė1(t)| ≤ 2
√

(1 + c21) (4d/c)1/4 (34)

In addition, if the design parameters are chosen appropriately, the right side of (33) and
(34) could be small enough.

Proof: As the matrixM−1
1 , B∗

1(θ), and vector u∗1(t) are symmetric and positive definite,
which is satisfied with local Lipschitz condition the trajectory tracking error system (16)
and (17) also satisfies the local Lipschitz condition. Based on (18) and (32), and Lemma
1 in [3], the trajectory tracking error system has a unique strong solution on [t0,∞) for
initial values e1(t0) ∈ R3, e2(t0) ∈ R3; ulteriorly, the exponentially practical stability in
mean square of the trajectory tracking error system is obtained.
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What is more, multiplying Equation (31) with ect > 0, we have,

L
(
ectV (x, t)

)
= ect (LV (x, t) + cV (x, t)) ≤ ectd (35)

Hence, integrating (34) from t0 to t, it results in

E
(
ectV (x, t)

)
≤ ect0V (x0, t0) + E

∫ t

t0

ecsd · ds ∀t ≥ t0 (36)

From (32), one can deduce that,

E |e1| ≤ 2ec(t0−t)/2

(
2∑

i=1

(
eT

i ei

)2
/4 + h1∆̃

2/(2γ1) + h̃2/(2γ2) + ρ̃2
i /(2γ3)

)1/4

+ (4d/c)1/4 (37)

E |e2| ≤ 2ec(t0−t)/2

(
2∑

i=1

(
eT

i ei

)2
/4 + h1∆̃

2/(2γ1) + h̃2/(2γ2) + ρ̃2
i /(2γ3)

)1/4

+ (4d/c)1/4 (38)

Utilizing (37) and (38), in view of |ė1|2 = (|e2| + c1 |e1|)2 ≤
(
|e2|2 + |e1|2

)
, it follows

that (33) and (34) hold.

5. Simulation Results. In this section, the proposed SRFTC algorithm is verified by
the ORTR with center of gravity shift and fault input. For any t, that only one actuator
fails is supposed. Without loss of generality, we consider the following possible cases: 1)
four actuators are normal; 2) the fourth actuator cannot work at all and other actuators
are normal; 3) the fourth actuator has lost effectiveness and other actuators are normal.
The reference trajectory is a linear path Xd(t), which is described by xd(t) = 20(1−e−0.2t),
yd(t) = 20(1 − e−0.2t), θd = π/4. The physical parameters of the ORTR are M = 58 kg,
L = 0.4 m, and I0 = 27.7 kg.m2. The random parameters are assumed to r0 = 0.1(1+sin t)
m, λ1 = L− r0 sin t m, λ2 = L+ r0 cos t m, λ3 = L+ r0 sin t m, and λ4 = L− r0 cos t m,
m = 80(1 + sin t) kg.

1) As four actuators are normal, the initial values are set as ∆̂(0) = 0.001, ĥ(0) = 0.001,
and ρ̂4(0) = 0.05 and the design parameters are c1 = 2.3, c2 = 0.5, ε = 1, γ1 = 3, γ2 = 3,
and γ3 = 0.5. The simulation results are shown in the following figures.

Figure 3. Trajectory tracking
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Figure 3 shows the trajectory tracking on X-position, Y-position, the orientation angle,
and path tracking of line, respectively. The ORTR can finish the trajectory tracking when
all of the actuators are normal.

2) For the simulation of the fourth actuator outage fault, the initial values are ∆̂(0) =

0.001, ĥ(0) = 0.001, and ρ̂i(0) = 0.05, and design parameters are c1 = 2.3, c2 = 0.5,
ε = 1, γ1 = 3, γ2 = 3, and γ3 = 0.5. The simulation results are presented in the following
figures.

Figure 4. Trajectory tracking

Figure 4 shows the tracking performance of the ORTR. These simulation results show
that the SRFTC is effective when one actuator cannot generate any force at all. Thus,
three non-fault functioning actuators can support the ORTR to achieve trajectory track-
ing.

To verify the effectiveness of the proposed method, we conduct comparative simulations
with [7], in which the problem of guaranteed cost non-fragile tracking control on the ORTR
without the center of gravity shift is investigated. However, now, the center of gravity
shifts is r0 = 0.1(1+sin t) m, β = 0.275π(1+sin t). Simulation results are given as follows.

Figure 5. Trajectory tracking
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Figure 5 plots the trajectory tracking of ORTR. It is evident the ORTR goes into
vibration which shows the necessity of consideration on the actuator fault and center of
gravity shift.

3) The fourth actuator is loss of effectiveness. We choose the initial values ∆̂(0) = 0.001,

ĥ(0) = 0.001, and ρ̂4(0) = 0.05, and the design parameters are c1 = 2.3, c2 = 3, ε = 1,
γ1 = 3, γ2 = 2, and γ3 = 0.5. The simulation results are presented in the following figures.

Figure 6. Trajectory tracking

(a) (b)

(c) (d)

Figure 7. Adaptive laws and the mean absolute of errors

As shown in Figure 6, the ORTR can track the trajectory Xd(t). The SRFTC method
can guarantee the walker’s continuous motion when the fourth actuator lost 50% of force.
The ORTR relies on the three well-functioning actuators to maintain the training process.
Figure 7(a) shows that tracking error system can realize asymptotic stability and the mean
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absolute of the tracking errors can be made small enough. Figures 7(b), 7(c) and 7(d)

imply 0 ≤ ρi ≤ 1, ∆̂(t) > 0 and ĥ(t) > 0, which satisfy the conditions of adaptive laws.
The simulation results show that the redundant input stochastic model of ORTR and
SRFTC can deal with center of gravity shift and fault input of ORTR.

6. Conclusions. A stochastic ORTR model with center of gravity shift and fault input
is considered in this paper. Based on the Lyapunov stability theory, a new fault tolerant
controller (SRFTC) is designed such that the mean absolute of the tracking error can be
made small enough by choosing appropriate design parameters in controller. Meanwhile,
the controller can render the closed-loop system exponential mean absolute stable. In the
simulation section, the effectiveness of SRFTC has been fully specified and the ORTR
with center of gravity shift can provide safe sequential motion which is verified when one
wheel actuator is in fault. Therefore, in addition to the ORTR, our method could also be
applied to other precision mechanical systems.
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