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Abstract. In this paper, in order to verify intrinsic robustness property, the finite mem-
ory structure (FMS) filter is applied for the state-space model with a couple of temporary
uncertainties, model uncertainty and unknown input. Extensive computer simulations
are performed for both nominal system and temporarily uncertain system. It is shown
that there can exist the trade-off between the estimation error and the tracking ability in
terms of the window length.
Keywords: Infinite memory structure filter, Finite memory structure filter, Temporary
uncertain system, Nominal system

1. Introduction. There have been many kinds of filters for diverse engineering problems
[1,2]. Among them, the state estimation filter is to extract dynamic system’s state values
from full or partial measurements with noises. Real-time control systems rely on reliable
state estimates in order to provide accurate and safe control of various dynamic systems.

Although the dynamic system is represented in state-space model accurately on a long
time scale, it may undergo unpredictable changes, such as jumps in frequency, phase, and
velocity. Because these effects typically occur over a short time horizon, they are called
temporary uncertainties [3]. In estimation filtering for dynamic systems, the estimation
filter should be robust to diminish the effects of temporary uncertainties. In contrast
to the infinite memory structure (IMS) filter such as well-known Kalman filter [4,5], the
finite memory structure (FMS) filter using only finite measurements on the most recent
window has been known inherently to be bounded input/bounded output stable and more
robust against temporary uncertainties [6-8]. This robustness property has been known
as one of good intrinsic properties of the FMS filter. If this good intrinsic property is
verified by a real application, this might be very informative for engineers and researchers
in control and estimation communities, which is a main motivation of this paper.

Therefore, the FMS filter is applied for the state-space model with consideration of a
couple of temporary uncertainties in order to verify intrinsic robustness property, which
is a main contribution of this paper. Firstly, a model uncertainty can be considered. The
state-space approach is commonly used when real physical systems and processes can
be approximated with a reasonable number of states. The approximation implies model
uncertainty that may cause an estimator to be biased and/or diverge. In other words, due
to concerns for model misspecification, there can be a model uncertainty. Secondly, an
unknown input can be considered. The unknown input has been used in many areas such
as fault detection and diagnosis for various systems and maneuver detection and target
tracking of flying objects.

Extensive computer simulations are performed for both nominal system and temporarily
uncertain system. It is shown that the FMS filter can be more robust than the IMS filter
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when applied to the state-space model with a model uncertainty, although the FMS filter
is designed with no consideration of robustness. When there is an unknown input in
the state-space model, the FMS filter can be better than the IMS filter for estimation
error. Moreover, it is shown that the noise suppression of the FMS filter might be closely
related to the window length of past measurements. It is also shown that there can exist
the trade-off between the estimation error and the tracking ability in terms of the window
length.

2. Finite Memory Structure Filtering for Temporary Uncertainties. The state-
space model for the dynamic system can be represented by

xi+1 = Axi + Bui + Gwi,

zi = Cxi + vi,
(1)

where xi is the state variable, zi is the measurement variable, and ui is the control in-
put variable. In addition, wi is the system noise and vi is the measurement noise, and
their covariances are Q and R, respectively. A, B, G, and C are matrices for state-space
model. Because noises wi and vi cause the system error, the desire system output should
be corrected. Therefore, the state estimation filtering has been applied to estimating the
state variable without noise interference. The IMS filtering, such as well-known Kalman
filtering, has been successfully applied [3,4]. In contrast to the IMS filter, the FMS filter
using only finite measurements on the most recent window has been known inherently to
be bounded input/bounded output stable and more robust against temporary uncertain-
ties, which means that the FMS filter has an intrinsic robustness property. Thus, in this
paper, the FMS filter is applied for the state-space model with consideration of a couple
of temporary uncertainties to verify this good intrinsic property.

2.1. Model uncertainty. The state-space approach is commonly used when real physi-
cal systems and processes can be approximated with a reasonable number of states. The
approximation implies model uncertainty. That is, due to concerns for model misspecifi-
cation, there can be model uncertainty, which may cause an estimator to be biased and/or
diverge. The state-space model with a model uncertainty can be represented by

xi+1 = (A + ∆Ai) xi + Bui + Gwi,

zi = (C + ∆Ci) xi + vi.
(2)

Although the estimation filtering is computed by the nominal discrete-time state-space
model (1), actual measurements for the estimation filtering are obtained from the system
with a model uncertainty (2).

Thus, as an alternative to the IMS filter, the FMS filter has been developed by the
iterative form as well as the matrix form using only the most recent finite measurements
on the window [i−M, i]. The window initial time i−M will be denoted by iM hereafter
for simplicity. The FMS filter with the iterative form was developed from the well-known
Kalman filter with the moving window strategy. The FMS filter with the iterative form
provides an optimal state estimate x̂i for the system state xi as follows [5,6]:

x̂i = Ω−1
M η̂i, (3)

where

η̂iM+j+1 =
[
I + A−T

(
Ωj + CT R−1C

)
A−1GQGT

]−1

A−T
[
η̂iM+j + CT R−1ziM+j

+
(
Ωj + CT R−1C

)
A−1BuiM+j

]
, η̂iM = 0,

Ωj+1 =
[
I + A−T

(
Ωj + CT R−1C

)
A−1GQGT

]−1

A−T
(
Ωj + CT R−1C

)
A−1,

Ω0 = 0, 0 ≤ j ≤ M.
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2.2. Unknown input. The state-space model with an unknown input can be represented
by

xi+1 = Axi + Bui + Epi + Gwi,

zi = Cxi + vi.
(4)

The unknown input vector pi ∈ ℜq in the system under consideration is to be rep-
resented by random-walk processes as pi+1 = pi + δi, where the unknown input pi ≡[

p1
i p2

i · · · ps
i

]T
and the unknown input noise δi ∈ ℜs is a zero-mean white Gaussian

random process with covariance Qδ. It is noted that the random-walk process provides
a general and useful tool for the analysis of unknown time-varying parameters and has
been widely used in the detection and identification area.

The unknown input can be treated as auxiliary states and then the state-space model
(4) can be rewritten as an augmented state-space model as[

xi+1

pi+1

]
= Aa

[
xi

pi

]
+ Baui + Ga

[
wi

δi

]
,

zi = Cxi + vi,

(5)

where

Aa =

[
A E
0 I

]
, Ba =

[
B
0

]
, Ga =

[
G 0
0 I

]
,

and the system noise and the unknown input noise term
[

wT
i δT

i

]T
is a zero-mean white

Gaussian random process with covariance Qa = diag
([

Q Qδ

])
.

Although the estimation filtering is computed by the augmented discrete-time state-
space model (5), actual measurements for the estimation filtering are obtained from the
actual system with an unknown input (4). The FMS filter with the iterative form provides

an optimal state estimate
[

x̂T
i p̂T

i

]T
for the augmented system state

[
xT

i pT
i

]T
as

follows [
x̂i

p̂i

]
= Σ−1

M θ̂i,

where

θ̂iM+j+1 =
[
I + A−T

a

(
Σj + CT R−1C

)
A−1

a GaQaG
T
a

]−1

A−T
a

[
θ̂iM+j + CT R−1ziM+j

+
(
Σj + CT R−1C

)
A−1

a BauiM+j

]
, θ̂iM = 0,

Σi+1 =
[
I + A−T

a

(
Σj + CT R−1C

)
A−1

a GaQaG
T
a

]−1

A−T
a

(
Σj + CT R−1C

)
A−1

a ,

Σ0 = 0, 0 ≤ j ≤ M.

3. Extensive Computer Simulations. Using the direct current (DC) motor system
[9-12], extensive computer simulations are performed for two kinds of temporary uncer-
tainties. The following discrete-time state-space model for DC motor system is considered

A =

[
0.8178 −0.0011
0.0563 0.3678

]
, B =

[
0.1813
0.0069

]
,

G =

[
0.0006 0

0 0.0057

]
, C =

[
1 0

]
,

(6)

where the motor is operated without any payload torque and the armature current is
chosen as the output.
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3.1. Simulation for model uncertainty. A model uncertainty as temporary uncer-
tainty for DC motor system is set by

∆Ai =

[
δi 0
0 δi

]
, ∆Ci =

[
0.2 ∗ δi 0.2 ∗ δi

]
, δi = 0.1, 150 ≤ i ≤ 300. (7)

System and measurement noise covariances are taken by Q = diag
([

0.12 0.12
])

and
R = 0.052, respectively. Three kinds of estimation filters, the FMS filter with M = 10, and
the FMS filter with M = 20, the IMS filter are compared. To make a clearer comparison
of estimation performances, simulations of 20 runs are performed using different system
and measurement noises, and each single simulation run lasts 500 samples.

Although the IMS filter and two FMS filters are computed by the nominal discrete-
time state-space model (6) for DC motor system, actual measurements for these three
filters are obtained from the system with the model uncertainty (7). The first figure of
Figure 1 shows RMS estimation errors of the rotational speed for 20 simulations. The
second figure of Figure 1 shows estimation error of the rotational speed for one of 20
simulations. As shown in Figure 1 both FMS filters can be better than the IMS filter in
terms of error magnitude and error convergence. The estimation error of FMS filters is
smaller than that of the IMS filter on the interval where the model uncertainty exists.
In addition, the convergence of estimation error is faster than that of the IMS filter after
the model uncertainty disappears. Therefore, FMS filters can be more robust than the
IMS filter when applied to DC motor system with the model uncertainty, although FMS
filters are designed with no consideration of robustness. In addition, the FMS filter can
be comparable to the IMS filter after the effect of the model uncertainty completely
disappears.

Figure 1. Simulation results for model uncertainty
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3.2. Simulation for unknown input. The unknown input is emulated by the step-type
load torque as follows:

pi = 0.5, 100 ≤ i ≤ 300, (8)

and its matrix E = [ −0.0069 6.3210 ]T . System and measurement noise covariances

are taken by Q = diag
([

0.012 0.012
])

and R = 0.052, respectively. The unknown
input noise covariance is taken by Qδ = 0.052. Three kinds of filters, the FMS filter with
M = 10, and the FMS filter with M = 20, the IMS filter are compared. To make a clearer
comparison of estimation performances, simulations of 20 runs are performed and each
single simulation run lasts 500 samples.

Although the IMS filter and two FMS filters are computed by the augmented discrete-
time state-space model (5) for DC motor system, actual measurements for these estimation
filters are obtained from the actual system with an unknown input (4). Figure 2 shows
RMS estimation errors of the rotational speed for 20 simulations and estimation error of
the rotational speed for one of 20 simulations. When there is an unknown input, FMS
filters can be better than the IMS filter in terms of estimation error of the rotational speed.
Especially, the FMS filter with M = 20 can be optimal in terms of noise suppression,
estimation error and tracking speed. In addition, the FMS filter can be comparable to
the IMS filter after the effect of the unknown input completely disappears.

Figure 2. Simulation results for unknown input

3.3. Effects of window length on simulation results. As shown in simulations re-
sults with temporary uncertainties (7) and (8), the noise suppression of the FMS filtering
might be closely related to the window length M . The FMS filtering can have greater
noise suppression for both state estimate and unknown input estimate as the window
length M increases. However, long M may yield the long convergence time of estimation
error. As shown in Figure 3 which compares estimation errors of the rotational speed



156 S. J. KWON AND P. S. KIM

Figure 3. Simulation results for unknown input according to diverse win-
dow lengths

according to diverse window length, the window length M can make the tradeoff between
the noise suppression and the tracking speed of the state estimation.

4. Conclusions. This paper has dealt with the FMS filter for the state-space model
with two kinds of temporary uncertainties such as model uncertainty and unknown input
to verify intrinsic robustness property of the FMS filter. To compare the FMS filter
and the IMS filter for both nominal system and temporarily uncertain system, extensive
computer simulations have been performed. It has been shown that the FMS filter can
outperform the IMS filter for temporary uncertainties. On the other hand, the FMS filter
can be comparable to the IMS filter after the effect of temporary uncertainties completely
disappears. It has been shown that the noise suppression of the FMS filter might be
closely related to the window length of past measurements. Meanwhile, in terms of the
window length, it has been shown that there can exist the trade-off between the estimation
error and the tracking ability.

The choice of the window length could still be somewhat nonsystematic although a
guideline has been given through computer simulations. Hence, a more systematic ap-
proach of determining the window length should be researched as a future work.
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