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Abstract. Focusing on the problem of consensus tracking control for multi-AUV (mul-
tiple autonomous underwater vehicle) system, this paper proposes an adaptive fuzzy fi-
nite time control method based on command filtering. First, the algebraic graph theory
is combined with leader-follower architecture for describing the communication topology
of multi-AUV system. Next, the error compensation mechanism is introduced into the
command filtering technology, and they work together to reduce the filtering error and
the explosion of complexity caused by backstepping. Finally, the application of finite time
and fuzzy logic system improves the convergence rate and the robustness of multi-AUV
system. The effectiveness of the proposed algorithm is illustrated by a simulation exam-
ple.
Keywords: Adaptive fuzzy control, Multiple AUV system, Command filtering, Graph
theory, Finite time

1. Introduction. With the increasing importance of marine resources, how to energeti-
cally develop marine technology is essential for the world. Marine technology is a general
term for all kinds of methods, skills and equipment used to study marine natural phe-
nomena and their changing rules [1]. In view of the abominable underwater environment
and the limitation of the depth of human diving, the autonomous underwater vehicles
(AUVs) which can carry out integrated operation under water without human remote
control have become an important tool for developing the ocean. It has various huge
advantages such as small volume, light weight, and low cost. Meanwhile, due to spatial
distribution, efficiency and flexibility of task execution, distributed control of multi-AUV
system has been paid considerable attention in ocean exploration, oceanographic surveys.

In order to complete the tasks in a reasonable and orderly manner, accurate consensus
tracking control of multi-AUV system for acquiring good quality of data has become a
hot issue in recent years. In the beginning trend of distributed controller design, leader-
follower architecture is used to solve the problems appearing in the communication topol-
ogy [2]. However, each AUV is independent and there is no direct connection in the
system, so it is relative absolutism for information access channels. By integrating the
past literature, it is obvious to see graph theory analysis has great advantages for dealing
with distributed control problem because it can simplify communication topology and
optimize information model of multi-AUV system. It abstracts each AUV as a node, and
expresses a certain relationship between AUVs through a directed or undirected graph be-
tween the nodes. Then, various methods of control will be combined into the distributed
controllers, such as [3, 4].
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Complex undersea environment causes highly coupled nonlinearities, time varying dy-
namics. Accordingly, many methods are applied to achieving accurate consensus tracking
control and overcoming parameter uncertainties resulting from unknown forces. Among
them are adaptive control [4], dynamic surface control [5], sliding mode control [6] and so
on. After reviewing all the above control methods, it can be clearly seen that adaptive
backstepping technology has the most extensive and effective application in the consis-
tency tracking control of multi-AUV system. However, the complexity of mathematical
models and operations causes the problem that certain functions must be linear, and it
limits the range of its application. Focusing on the external interference and uncertain
forces in the nonlinear matter of the multi-AUV system, the fuzzy logic system (FLS) and
neural networks (NNs) show great advantages. Meanwhile, for the explosion of complexity
condition that results from adaptive backstepping control, command filtered technologies
are introduced [7]. Besides, the errors caused by the filter still need to be perfected, and
the compensation mechanism is particularly important for the multi-AUV system.

Although AUVs designed by the above control method can achieve consistent or nearly
consistent to track the desired trajectory, the convergence time of consistent tracking
errors will be infinite. Compared with asymptotic control approaches mentioned above,
finite-time control technology can provide faster response, better anti-interference ability
and higher tracking precision in nonlinear system. Accordingly, finite time technology is
adopted in various different nonlinear systems, such as the multi-agent systems [8], the
nonlinear system [9, 10], the attitude synchronization control of spacecraft [11], especially
multi-AUV system. Nevertheless, when [12] investigated the finite-time sliding mode con-
trol for consensus tracking control of multi-AUV system, its inherent chattering problem
will be amplified and hard to be accepted for practical applications, so different control
methods are particularly important constructed for this issue. In the sum of the above
discussion, it is generally known that adaptive backstepping method can solve the track-
ing problems of multi-AUV system effectively, but how these techniques combine finite
time and command filtering has not yet been reported.

In view of all these methods mentioned above, the controller based on command-filtered
backstepping and fuzzy approximation theories is designed for multi-AUV system in this
paper, and the proposed algorithm is extended to finite-time control framework. Com-
pared with the control methods for dealing with the uncertain forces and external interfer-
ence in [4], the filtering processing in [5], and the convergence time in [6, 7], the proposed
FLS-based finite-time consensus tracking approach has the following advantages.

(1) In [4] the traditional adaptive control is adopted to deal with the influence of the
variation of hydrodynamic parameters. The limitation of the ocean environment and
sensors leads to the limited speed of each AUV to obtain global information, but the
change of the operating environment is very fast, so it is difficult to produce good results
because it is too late to correct. However, this paper introduces the fuzzy approximation
theory to approximate the unknown nonlinear forces and external interference, and it
improves the robustness and fault tolerance of multi-AUV system.

(2) In [5] the backstepping and dynamic surface technologies are introduced, respec-
tively. The former has the explosion of complexity condition due to the design of virtual
controllers, and the traditional filters of the latter will cause errors. The modified error
compensation mechanism and the fractional power state feedback are employed in this
paper, which guarantee the errors are finite-time stable and uniformly ultimately bounded
in the virtual and actual controllers, so the control performance is improved.

(3) Although in [6, 7], various control modes can guarantee the asymptotic convergence
of the system, the time of convergence is not ideal. The finite-time technology is adopted
to improve the fast response characteristic of the system. It is proved that not only do
the AUVs have the ability to realize the desired position and velocity in finite time, but
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also the system has strong robustness. Finally, a simulation example is given to verify
the effectiveness and robustness of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 describes the graph theory, force
analysis and some lemmas. In Section 3, the command-filtered backstepping controllers
are designed based on finite time. Section 4 gives stability analysis. Simulation example
is given to verify the effectiveness and robustness of the proposed algorithm in Section 5.
Finally, some conclusions are presented in Section 6.

2. Preliminaries and Problem Formulation.

2.1. Graph theory. Consider a distributed multi-AUV system consisting of one leader
and n followers, the communication topology can be modeled by a weighted graph ς =
{M,E,A}, where M = {m1,m2, . . . ,mn} is the set of nodes, and node i (i ∈M) denotes
the ith following AUV. E ⊂ M ×M represents the set of edges, and A = [aij] ∈ Rn×n is
weighted adjacency matrix of the graph ς. If the ith AUV has access to send information
directly to the jth AUV, the edge between them is denoted as (mi,mj) ∈ E. Define
aij > 0 (usually aij = 1) if (mj,mi) ∈ E, else aij = 0, and suppose aii = 0, ∀i. In-
degree of mi can be expressed as di =

∑n
j∈Ni

aij and the sum of it can be represented

as D = diag{d1, d2, . . . , dn}. The Laplacian matrix can be expressed as L = D − A ∈
Rn×n. A path between m1 to mk is the sequence (m1,m2), (m2,m3), (mk−1,mk), where
(mj−1,mj) ∈ E for j = 1, 2, . . . , k. If each couple of nodes (mi,mj) has access, graph ς
is called strongly connected. Define a vertex which has access to others as the root node,
and if weighted graph ς has a root node, it contains a directed spanning tree.

Choose m0 to denote leader, the augmented graph ς̄ which contains m0 is defined as
ς̄ =

{
M̄, Ē, Ā

}
, where M̄ = {m0,m1,m2, . . . ,mn}, Ē ⊂ M̄ × M̄ . The weights between

vertex of leader to vertices of followers are defined as bi0 ≥ 0. If leader has an access
to the ith follower, bi0 = 1, else bi0 = 0, and diagonal matrices B and H are defined as
B = diag{b10, b20, . . . , bn0} ∈ Rn×n, H = L + B. The following assumption on the graph
topology is required for consensus tracking control problem of multi-AUV system.

Assumption 2.1. In multi-AUV system, graph of communication relations ς̄ has span-
ning tree, that is B ̸= 0 and the root node represents the leader simultaneously.

Lemma 2.1. [3]: H is full rank under Assumption 2.1 and each eigenvalue of H will
have positive real part.

2.2. Force analysis. Assume the situation that all attitudes of AUVs are fixed, so the
distributed multi-AUV system eliminates singular points. Without loss of generality and
under Assumption 2.2, assume that the following AUVs are labeled from 1 to n, and the
force analysis is given as follows: η̇i = Rivi

Miv̇i = −Di(vi)vi − gi + fi − di
yi = ηi

(1)

where ηi = [xi, yi, zi]
T and vi = [ui, vi, wi]

T denote position and velocity vectors in the
inertial or body-fixed reference frame, respectively. Ri is the transition matrix. Di(vi),
Mi, di, gi, fi = [Xi, Yi, Zi]

T ∈ R3 are defined as water resistance, inertia, interferences,
restoring force and motive power, respectively. For angle γ ∈ R, denote sγ = sin γ, cγ =
cos γ.

Ri =

cψi
cθi

−sψi
cφi

+ sφi
sθi
cψi

sψi
sφi

+ sθi
cψi
cφi

sψi
cθi

cψi
cφi

+ sφi
sθi
sψi

−cψi
sφi

+ sθi
sψi
cφi

−sθi
sφi
cθi

cφi
cθi

 (2)

Define Mi = diag [mi1,mi2,mi3], Di(vi) = diag[dLi1
+ dPi1

|ui|, dLi2
+ dPi2

|vi|, dLi3
+

dPi3
|wi|], mij, dLij

, dPij
> 0. gi = [(Wi − Bi)sθi

, −(Wi − Bi)cθi
sφi

, −(Wi − Bi)cθi
cφi

]T ,



194 J. CUI, L. ZHAO, Y. MA AND J. YU

where Wi and Bi represent the gravitational and buoyancy forces, respectively, i ∈ M ,
j = 1, 2, 3.

Assumption 2.2. Suppose the ith followers have the following properties: ∥di∥ ≤ d∗i and
∥gi∥ ≤ g∗i , where d∗i , dLij

, dPij
, Wi, Bi and gi(Θi) are bounded positive constant.

Applying the backstepping method to the above model, choosing xi,1 = ηi, xi,2 = η̇i, it
can be translated to the following equation: ẋi,1 = xi,2

ẋi,2 = Ji + f̄i
yi = xi,1

(3)

where Ji = Ṙi(Θi)vi −Ri(Θi)M
−1
i Di(vi)vi −Ri(Θi)M

−1
i di −Ri(Θi)M

−1
i gi(Θi), and f̄i =

Ri(Θi)M
−1
i fi.

Assumption 2.3. Let Ωd ⊂ Rn denote an open set that includes the origin, J
(p)
i are

known smooth nonlinear functions bounded on Ω̄d for p = 1, . . . , (n− i) for system (1).

Assumption 2.3 ensures that the followers can track the reference signal from any initial
positions, the function Ji is stable under the Lipschitz condition.

2.3. Some lemmas.

Lemma 2.2. [11]: Define function F (x) in U ∈ Rn which satisfies smooth and positive.
If it starts from an area U0 ⊂ Rn and has the following character: Ḟ (x) + kF γ(x) ≤ 0,
then it can reach F (x) ≡ 0 in finite time t∗, where K > 0, 0 < γ < 1 and t∗ ≤
F (0)1−γ/(K(1 − γ)).

Lemma 2.3. [13]: Suppose smooth and positive function F (x) can get the following in-
equality: Ḟ (x) + λ1F (x) + λ2F (x)γ ≤ 0 in finite time. Then, the parameters will satisfy

λ1 > 0, λ2 > 0, γ ∈ (0, 1) and the setting time is T ≤ t0 + 1
λ1(1−γ) ln λ1F (0)1−γ+λ2

λ2
.

In this brief, the fuzzy logic system will be used to approximate the unknown continuous
function f(x) [14]. Let f(x) be the continuous function defined on a set Ω. Then for any
scalar ε > 0, the following inequality can be obtained:

sup
x∈Ω

∣∣f(x) −W TS(x)
∣∣ ≤ ε (4)

where W = [W1, . . . ,WN ]T is the ideal constant weight vector, and the basis function

vector is S(x) = [p1(x), p2(x), . . . , pN(x)]T /
∑N

i=1 pi(x), with N > 1 being the number
of FLS rules and pi are chosen as Gaussian functions, i.e., for i = 1, 2, . . . , N , pi(x) =

exp
[
−(x−µi)

T (x−µi)

γ2
i

]
, where µi = [µi1, µi2, . . . , µin]

T is the center vector, and γi is the width

of the Gaussian function.

3. The Design of Finite Time Command Filter Controllers. In each step of the
distributed backstepping controllers design, the errors of each AUV are defined as:

ei,1 =
n∑
j=1

aij(ηi − ηj) + bi(ηi − ηd) =
n∑
j=1

aij(xi,1 − xj,1) + bi(xi,1 − ηd)

ei,2 = Ri(Θi)vi − αi = xi,2 − αi, i ∈ ς

(5)

where given reference tracking trajectory of leader is ηd and αi are the outputs of second-
order Levant differentiators based on finite-time command filter technologies. Assume that
the first and second time derivatives, η̇d and η̈d, are smooth, bounded and known functions.
The differentiators employ the virtual controller σi as the input signals, and obtain their
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differential signals by quickly filtering the intermediate signals. Then, illustrating the
first-order Levant differentiator refers to [15]:

φ̇i,1,χ = τi,1,χ, φ̇i,2,χ = −Ki,2sign (φi,2,χ − τi,1,χ)

τi,1,χ = −Ki,1 |φi,1,χ − σi,1,χ|
1
2 sign (φ1 − σi,1,χ) + φi,2χ

(6)

where αi = φi,1,χ = [φi,1,1, φi,1,2, φi,1,3]
T and α̇i = τi,1,χ = [τi,1,1, τi,1,2, τi,1,3]

T are the
outputs. Meanwhile, the input noise is essential due to the bad underwater environment,
so the parameters K1 and K2 are properly chosen as the parameters of the differentiator
for mitigating the effects caused by noise, and the following lemma is introduced.

Lemma 3.1. [15]: Consider the input noise satisfies the inequality |σ−σ0| ≤ κ, and then
the following inequalities are established in finite time.

|φ1 − σ0| ≤ ϖ1κ = µ1, |τ1 − σ̇0| ≤ ϖ2κ
1
2 = µ2 (7)

where ϖ1 and ϖ2 are positive constants related to the design of Formula (5), and µ1 and
µ2 are positive constants.

Remark 3.1. Note that the inputs σi are supposed to be effected by the noise due to the
bad underwater environment, and assume that the boundary of noise exists. Normally, if
the inputs σi of filter (6) are not effected by the noise, then µ1 = 0.

Note that the errors caused by the second-order Levant differentiator are magnified
which will have impact on the range of error convergence. To remove the influence of
αi − σi,1 and guarantee the fast response characteristics of error compensation system
distinct from asymptotic convergence in the traditional methods, error compensation
mechanism is defined as:

ε̇i,1 = − hi,1εi,1 + (di + bi)(αi − σi,1) + (di + bi)εi,2 − zi,1sign(εi,1)

ε̇i,2 = − hi,2εi,2 − (di + bi)εi,1 − zi,2sign(εi,2)
(8)

where εi,m(0) = 0 are the error compensating vectors, and 0 < zi,m < 2hi are constants.
Meanwhile, it satisfies that wi,m = ei,m − εi,m, i ∈ ς, m = 1, 2.

Then the distributed finite-time virtual controllers σi,m are constructed as follows:

σi,1 =
1

(di + bi)

(
−hi,1ei,1 + biη̇d +

n∑
j=1

aijxj,2 − si,1w
γ
i,1

)

σi,2 = −hi,2ei,2 −
wi,2θ̂iS

T
i Si

2k2
i

− 1

2
wi,2 + α̇i − (di + bi)ei,1 − siw

γ
i,1

(9)

where ki are positive constants and Si (i ∈ ς) are the basis function vectors chosen from
FLS. si and γ are positive constants and assumed that 0 < γ < 1 according to the lemma
of finite-time. θ̂i is the estimation of θi which will design later in this paper. Then,
Theorem 3.1 is given as follows.

Theorem 3.1. For the multi-AUV system (1) under Assumptions 2.1-2.3, whose virtual
control signals σi,m combine the finite-time command filers (6) and the error compensation
mechanism (8), the control law fi = MiR

T
i (Θi)f̄i can guarantee the tracking errors, ηi−ηd,

converge to a field containing original point in finite time. Meanwhile, all vectors in the
multi-AUV system will achieve bounded in finite time, i ∈ ς.

4. Stability Analysis. In order to illustrate the correctness of Theorem 3.1, the stability
analysis is given.

Proof: Three steps are chosen to proof Theorem 3.1, including the recursive control
design, adaptive updating law design and the finite-time boundness of error compensating
system.
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Step 1: Construct the Lyapunov function as:

W = Wi,1 +Wi,2 +
N∑
i=1

1

2ri
θ̃2
1 =

1

2
w2
i,1 +

1

2
w2
i,2 +

N∑
i=1

1

2ri
θ̃2
1 (10)

Taking the derivative of W1 yields

Ẇi,1 = wi,1

[
−

n∑
j=1

aijxj,2−biη̇d− ε̇i,1 +(di+bi)σi,1 +(di+bi)(αi−σi,1)+(di+bi)ei,2

]
(11)

Then, replacing the error compensation mechanism εi,1 and the virtual control signal σi,1
with Formulas (8) and (9), the above equation can be translated into:

Ẇi,1 = wi,1

[
− hi,1wi,1 + (di + bi)wi,2 + zi,1sign(εi,1) − siw

γ
i,1

]
(12)

Taking the derivative of W2 yields

Ẇi,2 = Ẇi,1 + wTi,2wi,2 = Ẇi,1 + wi,2
(
Ji + f̄i − α̇i − ε̇i,2

)
(13)

Typically, suppose that the internal and external interferences of the system are bound-
ed. However, the upper bounds of uncertain forces and external disturbances cannot
be calculated accurately in practical engineering. It is generally known that FLS has
good ability to approximate unknown nonlinear functions, so the FLS is introduced as
Ji = W T

i Si(xi)+δi, where xi = (η̇i, ηi) are input vectors, Wi are the optimal approximation
weight, and δi > 0 are approximation errors and satisfy that |δi| < ξi. By Young’s
inequality, the following inequalities can be obtained:

wi,2Ji ≤
1

2k2
i

w2
i,2 ∥Wi∥2 STi Si +

1

2
k2
i +

1

2
w2
i,2 +

1

2
ξ2
i .

Substituting the error compensation mechanism ξi,2 and virtual control function σi,2 into
Equation (13), the equation can be further simplified into:

Ẇi,2 ≤−
2∑

m=1

hi,mw
2
i,m +

1

2
ξ2
i +

1

2
k2
i +

1

2k2
i

w2
i,2

(
∥Wi∥2 − θ̂i

)
STi Si

+
2∑

m=1

wi,mzi,msign (εi) −
2∑

m=1

si,mw
γ+1
i,m

(14)

Step 2: The adaptive updating laws are designed by using FLS to estimate the uncertain
parameters. Choose θi = ∥Wi∥2, θ̂i is the estimation of θi, considering θ̃i = θi − θ̂i, and

the adaptive laws of θ̃i are designed as:
.

θ̂i =
ri

2k2
i

w2
i,2S

T
i Si − λiθ̂i (15)

where λi and ri are designed positive constants. For the part of error compensation mech-
anisms, the following inequalities can be obtained combined with Yang’s inequality:

wi,mzi,msign (εi,m) ≤ zi,m
2
w2
i,m +

zi,m
2

[sign (εi,m)]2 ≤ zi,m
2
w2
i,m +

zi,m
2

(16)

Substituting the adaptive updating laws (15) and (16), the time derivative of W can
be computed:

Ẇ ≤ −
N∑
i=1

2∑
m=1

[(
hi,m − zi,m

2

)
w2
i,m + si,mw

γ+1
i,m

]
−
(
λi
2ri

θ̃2
i

)γ+1/2

+
N∑
i=1

2∑
m=1

(
1

2
k2
i +

1

2
ξ2
i +

zi,m
2

)
− 1λi

4ri
θ̃2
i +

(
λi
2ri

θ̃2
i

)γ+1/2

− λi
2ri

θ̃2
i +

λi
r1
θ2
i
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If λi

2ri
θ̃2
i ≥ 1, the following inequalities can be obtained:(

λi
2ri

θ̃2
i

)γ+1/2

− λi
2ri

θ̃2
i +

λiθ
2
i

ri
≤ λi

2ri
θ̃2
i −

λi
2ri

θ̃2
i +

λiθ
2
i

ri
≤ λiθ

2
i

ri
.

If λi

2ri
θ̃2
i < 1, the following inequalities can be further obtained:(

λi
2ri

θ̃2
i

)γ+1/2

− λi
2ri

θ̃2
i < 1 − λi

2ri
θ̃2
i < 1.

Therefore, combining the two above inequalities yields(
λi
2ri

θ̃2
i

)γ+1/2

− λi
2ri

θ̃2
i +

λiθ
2
i

ri
≤ λiθ

2
i

ri
+ 1.

Thus, from these inequalities, the time derivative of W can be rewritten as:

Ẇ ≤ −
N∑
i=1

2∑
m=1

[(
hi,m − zi,m

2

)
w2
i,m + si,mw

γ+1
i,m

]
−
(
λi
2ri

θ̃2
i

)γ+1/2

+
N∑
i=1

2∑
m=1

(
1

2
k2
i +

1

2
ξ2
i +

zi,m
2

)
− 1λi

4ri
θ̃2
i +

λiθ
2
i

ri
+ 1

≤ −a0W − b0W
γ+1
2 + c

where a0 = min
{
(2hi,m − zi,m) , 1

2
λi
}
, b0 = min

{
(si,m) · 2

1+γ
2 λ

1+γ
2

i

}
, c =

n∑
i=1

(
1
2
k2
i + 1

2
ξ2
i

+
zi,m

2

)
+ 1 +

λiθ
2
1

r1
, i = 1, 2, . . . , n. The following inequality can be obtained:

Ẇ ≤ −
(
a0 −

c

2W

)
W −

(
b0 −

c

2W
γ+1
2

)
W

γ+1
2 (17)

If 2hi,m − zi,m > 0, a0 − c
2W

> 0 and b0 − c

2W
γ+1
2

> 0, the compensated tracking errors

wi,m will converge to the region |wi,m| ≤ max

{√
c
a0
,

√
2
(

c
2b0

) 2
γ+1

}
in finite time T1 ≤[

1/
(
a0 − c

2W

) (
1 − γ+1

2

)]
ln
[(
a0 − c

2W

)
W 1− γ+1

2 (0)
(
b0 − c

2W
γ+1
2

)/(
b0 − c

2W
γ+1
2

)]
.

Step 3: Combining with the definition of tracking errors, ei,m = wi,m + εi,m, if εi,m is
bounded in finite time which can be proved, the conclusion that global tracking errors
converge to a field of original point in setting time will establish. Meanwhile, εn = 0 has
defined in the part of error compensating, so the key is how to prove the bounds of εi
exist.

W̄ =
1

2

n∑
i=1

2∑
m=1

εTi,mεi,m (18)

Then, the following equalities can be obtained:

.

W̄ = −
n∑
i=1

(
2∑

m=1

(
hi,mε

T
i,mεi,m − εi,mzi,msign (εi,m)

)
+ (di + bi) ε

T
i,1 (αi − σi,1) − (di + bi) ε

T
i,2εi,1 + (di + bi) ε

T
i,1εi,2

) (19)
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According to Lemma 2.2 and Lemma 2.3, the conclusion that |(αi − σi,1)| ≤ µi,1 can
be achieved in finite-time T2, and then the following equalities can be further obtained:

.

W̄ ≤−
n∑
i=1

2∑
m=1

hi,mε
T
i,mεi,m −

n∑
i=1

2∑
m=1

zi,m |εi| +
n∑
i=1

|di + bi| |εi| |αi − σi,1|

≤ − h0W̄ −
(
z0 −

√
2Nµ̄1

)
W̄

1
2

(20)

where h0 = 2 min (hi,m), z0 =
√

2 min (zi,m) and µ̄1 = max{(di + bi)µi,1}. Then, if z0 −√
2Nµ̄1 > 0 and the parameter z0 is chosen appropriately according to Lemma 2.2, εi,m will

achieve stability in finite time T3, where T3 ≤ T2+
[
1/
(
h0

(
1 − 1

2

))]
ln
[(
h0W̄

1
2 (T2)+

(
z0−√

2Nµ̄1

))
/
(
z0 −

√
2Nµ̄1

)]
. From the above analysis, if the convergence time is chosen as:

t ≥ T4 = max{T3, T4}, the errors will satisfy: |ei,m| ≤ max
{√

c
a0

,

√
2
(
c

2b0

) 2
γ+1

}
. Finally,

tracking errors will converge to |ηi − ηd| ≤
√
N max

{√
c
a0

,

√
2
(
c

2b0

) 2
γ+1

}
/Λmin(H) in

finite time t ≥ T4, where Λmin(H) is the minimum singular value of H.

5. Simulation Results. The simulation of finite time command filtered controllers is
conducted for the illustration of the above method. Choosing the architecture of 4 AUVs
including 1 leader and 3 followers, communication relations of the system can be expressed
in Figure 1. The matrices of the second-order multi-AUV system are chosen as follows:
the interferences are di = 0.01[sin(0.3t), cos(0.6t), sin(0.05t)], the inertia matrix Mi =
diag{1.77, 1.43, 1.47}, and water resistance Di = diag {1.21 + 0.93 |ui| , 0.91 + 0.92 |vi|,
1.53 + 1.21 |wi|}. Other parameters of the transformation matrix and restoring force
vector are selected as φi = π/5, θi = −π/10, ψi = π/12, Wi = 1.4, and Bi = 1.1.
Combining the communication topology, Laplacian matrices L and B are given as: L =
[0, 0, 0;−1, 1, 0;−1, 0, 1], B = [1, 0, 0; 0, 0, 0; 0, 0, 0].

The initial states of each follower are defined as: η1(0) = [0.09, 0.57, 0.68]T , η2(0) =
[−0.19, 0.37, 0.48]T , η3(0) = [0.41, 0.69, −0.09]T and the initial acceleration η̈ = [0, 0, 0].
Furthermore, choose appropriate controller parameters as: hi,m = 10, si,m = 20, zi,m = 8,
γ = 3

5
, Ki,1 = 400, Ki,2 = 8000, ri = 1, ki = 1, i = 1, 2, 3. For the FLS, the centers of FLS

activation function µi are distributed evenly in the range [2 × 2], the number of neurons
is 10 and the width is all set to be 4. In order to observe the performance comparison
between the proposed algorithm and the classical command-filtered [15], considering the

tracking errors metric as the reference objects, it is defined as: TEM =
√∑n

i=1 ∥ei,1∥
2.

Besides, choose different hi,m to illustrate the influence caused by parameters on the
radiuses of tracking error regions.

Figure 1 shows the communication topology of the multi-AUV system. By using the
proposed control method, it can obviously see the results of simulation in Figures 2-
4, which display the trajectories of the leader ηd can be tracked well by followers ηi.
Meanwhile, the intermediate signals are filtered and the compensation errors can converge
to regions near the original point in setting time. From Figure 5, it can clearly see
that larger hi,m can guarantee the system has faster convergence rate, and it can be
proved that si have the same effect. Furthermore, the comparison is made in Figure 6
to better demonstrate the advantages of the finite time in distributed command filtered
backstepping control method. The selection of parameters is the same as above approach
whether in FLS or command filtered. It can obviously get the conclusion by testing several
sets of the control parameters for conventional distributed command filtered backstepping
control, the response curves of TEM will have a faster convergence speed under the set
of control parameters with hi,m = 30 by comparing with other sets of parameters in trail
and error. Nevertheless, even in this case, the finite time approach under hi,m = 10 has
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Figure 1. Communication topology
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Figure 2. xi of ηd and ηi. i = 1, 2, 3.
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Figure 3. yi of ηd and ηi. i = 1, 2, 3.
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Figure 4. zi of ηd and ηi. i = 1, 2, 3.
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better tracking performance compared with any set of parameters mentioned above in
unfinite time.

6. Conclusions. In this paper, a distributed control method based on FLS technique
and command filtering has been proposed for multi-AUV system. In order to avoid the
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unknown internal and external interferences, the algebraic graph theory and the FLS tech-
nique are integrated into the distributed controllers. Moreover, the command filtering is
introduced to overcome the explosion of complexity condition appearing in backstepping.
In addition, the error compensation mechanism is used by combining the finite-time tech-
nology. Then both the errors of compensation system or tracking errors can converge to
a desired small neighborhood in finite time. The simulation results demonstrate the ef-
fectiveness of the proposed algorithm and and robustness of the multi-AUV system. The
future research problems we considered include the algorithm simplification and practical
application.
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