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Abstract. Text analysis has been an important research area. Among text processing,
opinion mining which is deciding the opinions and giving feelings of others is popular.
The researchers have proposed different ways to give the opinions of people automatically.
In this case, low resource languages are still difficult to treat due to the unavailability of
annotated big corpora and basic natural language processing tools. This research proposes
a new method to use a character-based variable-length n-gram word model, which makes
n vary within the pre-set thresholds, and select frequent strings of each n as n-length
words. We employed this method for words segmentation and the sentiment values are
calculated based on variable-length of n-gram-based words. Finally, sentiment analysis of
Burmese news articles is processed whether the news is positive or negative, and achieved
a similar result with Conditional Random Field (CRF) based ordinary word segmentation
with a small size of supervised data. This enables to treat low resource languages without
focusing on language specific characteristics.
Keywords: Sentiment analysis, The Burmese language, Variable-length n-gram word,
CRF

1. Introduction. Sentiment analysis has been extensively explored to estimate the sen-
timent value, positive or negative, of opinions, reviews, and many other types of texts
[1,2]. Typically its target is text, and thus sentiment analysis is usually based on various
pre-processing including sentence segmentation, word segmentation, part-of-speech tag-
ging, word sense disambiguation, etc., as well as appropriate sizes of class-labeled datasets
with which supervised machine learning training is conducted. In the case of languages
such as English, Spanish, and Japanese, such tools and data resources are readily avail-
able. In the case of languages such as Burmese, Khmer, and Lao, to name just a few of
so-called low resource languages, they are often readily unavailable. This is all the more
critical when the target language is written without explicit word delimiters; in other
words, when words are written concatenated without breaks with spaces or other punc-
tuations. The Burmese language is exactly of this type. Currently a word segmentation
tool of a sufficient quality and a stardard corpus is unavailable, and the Burmese writing
system concatenates words, though spaces are often used to separate phrases. There are
roughly two directions to cope with these difficulties. One is, naturally expected, to pre-
pare necessary preprocessing tools and datasets for the target language, which requires
time, cost, and efforts, which are also not readily available in most cases. The other is
to develop an alternative way to do without those. There are some studies trying some
language tasks without assuming word segmentation [3], but there is no such study for
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the Burmese language. As Myanmar began developing fast, practical methods that do
not assume costly preparations are indeed desirable.

In this paper, we propose a new method to conduct sentiment analysis with variable-
length n-gram words for the Burmese language. The overview of our research procedure
is shown in Figure 1. n-gram word is defined as a string of characters of n. Thus,
n-gram words will not be a good substitute for ordinary words when n is fixed. Our
proposal is to make n vary within the pre-set thresholds. This method begins with the
maximum nmax to pick up frequent strings of n-length, and then proceeds pick-ups from
the rest of the text iteratively to the minimum nmin. We evaluate this proposal with the
Burmese language, one of the low resource languages, in comparison with an ordinary word
segmentation model that were previously proposed by us with a tiny set of data [7]. With
these variable-length n-gram words, sentiment classification is conducted with two feature
sets: tf-idf of each word and word sentiment values that are calculated with SO-LSA
(Semantic Orientation-Latent Semantic Analysis) [4] method. The sentiment classification
is done with Support Vector Machines (SVM) [5]. The experimental results show that our
variable-length n-gram word-based sentiment analysis achieved better results compared
to ordinary word-based sentiment analysis. Importantly, our method does not refer to
linguistic characteristics specific to the target language, and thus this method can be used
for other languages without much time, cost, and effort to prepare pre-processing tools.

Figure 1. Overview of research procedure

The organization of this paper consists of 7 sections: the Burmese language, related
works, word segmentation with Conditional Random Fields (CRF) – a baseline model,
variable-length n-gram words, sentiment analysis of Burmese newspaper articles, and
conclusion.

2. The Burmese Language. The Burmese language is the official language of the Re-
public of the Union of Myanmar. The Burmese writing system consists of 33 main alpha-
bets or consonants (some people say 34 because one consonant has two types), characters
such as 7 independent vowels, 7 dependent vowels, 4 medials, 2 final symbols, 2 tone
marks, 4 abbreviations, 2 types of punctuation and numerals. The Burmese text is writ-
ten from left to right. It requires no spaces between words, although modern writing
usually contains spaces after each clause to enhance readability. However, there are no
specific rules for space adding. Let us illustrate Burmese writing in Figure 2.
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Figure 2. An example of Burmese sentence with English translation

3. Related Works. Turney and Littman introduced the calculation of Semantic Orien-
tation (SO) of a word from its associated statistical information with a set of positive
and negative seed words [4]. If the value of semantic orientation of a word is positive,
the word is positive; otherwise, it is negative. This approach is evaluated in two ways
based on two different statistical measures of word association called Pointwise Mutual
Information (PMI), which measures the association degree between two words by the fre-
quency of their co-occurrence, and Latent Semantic Analysis (LSA), which measures the
association degree of two words by comparing the contexts in which they co-occur. First
to calculate the semantic orientation of a word, Latent Semantic Analysis (LSA) is calcu-
lated. Calculation of LSA includes two main parts. First tf-idf (term frequency – inverse
document frequency) matrix (the original matrix X) is constructed. In the matrix, the
row vectors represent the words and the column vectors represent the documents (news
articles). Each cell represents the weight, tf-idf score, of the corresponding word in the
corresponding document. The next step is to apply Singular Value Decomposition (SVD)
to compressing the original matrix, X. SVD decomposes X into a product of three ma-
trices, X = UDV T, where U and V are orthogonal matrices and D is a diagonal matrix
of singular values. Let Dk, the diagonal matrix with the top k singular values, Uk and Vk

be formed by selecting the corresponding columns from U and V . The matrix UkDkV
T
k

can be considered as a compressed version of the original matrix.
The similarity of two words, LSA (word1, word2), is measured by calculating the cosine

similarity of two corresponding vectors in the compressed matrix. Semantic Orientation,
SO-LSA of a word is calculated based on the following equation:

SO-LSA (word) =
∑

pword ∈ Pwords LSA (word, pword)
−

∑
nword ∈ Nwords LSA (word, nword)

(1)

Here, Pwords and Nwords mean the set of positive and negative seed words. If SO-LSA
(word) value is positive, the word is classified as positive word and it is negative word
when SO-LSA (word) value is negative. In this way, a sentiment dictionary, consisting of
entries and their sentiment values, is created according to the target data.

Their experiments suggested that SO-LSA method used the data more efficiently than
SO-PMI method and SO-LSA might provide better accuracy than SO-PMI for a corpus of
comparable size. By obtaining the sentiment value of each word, a sentiment dictionary
can be created according to the target data. In this study, we followed their method,
SO-LSA, to calculate the sentiment values of the word.

When we have sentiment values of words, the sentiment value of a sentence or a text
can be estimated as the summation value of all words in it [1]. If the resulted value is
positive, the article is classified as ‘positive’. Otherwise, it is classified as ‘negative’. The
formula is as follows:

i=n∑
i=1

Vwi
(2)

where wi is the i-th word in a news article and Vwi
is the sentiment value of wi. This

method is employed particularly when the ground truth data is not available.
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Another way to estimate the sentiment value of a sentence or a text is to use a machine
learning classification approach. In this approach, we need the ground truth class labels,
and word sentiment values, or some other values including tf-idf values, can be used as a
set of features. Many studies have been conducted with many different machine learning
techniques, and one of the best methods is Support Vector Machines (SVM). SVM is
one of the most popular and efficient machine learning algorithms [5]. In this paper, we
employ SVM with a linear kernel using scikit-learn with default parameter setting except
for C value which is 0.1 or 1.0. A linear kernel is selected because it is considered to be
most suitable kernel for text analysis [9].

4. Word Segmentation with Conditional Random Fields (CRF) – A Base-
line Model. In our previous study [7], a way to process the word segmentation for the
Burmese language with CRF framework was proposed, which is the current state-of-the-
art model and is employed here as a baseline model to evaluate our proposal in this
paper.

A machine learning framework, CRF, for building probabilistic undirected graphical
models to segment and label the structured data was proposed and [6] reported the
performance of CRF outperforms the previous models on natural language data. The
largest benefit of CRF is that it can handle the various types of non-independent features
of input. The sequence of input data to the CRF is structured. CRF learns the structured
data and constructs a conditional model. The model predicts the probabilities of possible
label sequence of input data based on the previously observed data.

In [7], characters clustering is employed in which character clusters mean groups of
some inseparable characters due to language characteristics. For characters clustering, a
set of 29 types of Burmese Character Clusters (BCCs), in which 22 of them corresponds
to equivalents in Thai Character Cluster (TCC) from [8] and seven of them are newly
proposed as rules. CRF is applied as a sequential labeling machine learning method. The
sequence of input data is labeled as ‘B’ for the beginning character cluster of a word,
‘I’ for the inner or inside character cluster of a word, ‘E’ for the end character cluster
of a word and ‘S’ is the single character cluster word. The experiment was tested on a
small set of data. The data set contains only 5 news articles which contain approximately
8,000 single words in a total of 191 sentences. Some single words are grouped to form
compound words and then the data remains nearly 3,500 words. The experiment achieved
the accuracy of 98.8%.

Importantly, as CRF is a supervised machine learning method, its training needs labeled
data, which are not easily available in many low resource languages. In [7], a tiny set
of labeled data was manually prepared. Such preparation requires tremendous time and
efforts, also considering another fact that linguistic agreements on word and grammar are
also not fixed in many low resource languages. Thus, it is often realistically difficult to
prepare labeled datasets of similar quantity and quality to some major languages such
as English, which is why variable-length n-gram-based word segmentation is proposed in
this paper.

5. Variable-Length n-gram-based Word Segmentation. In the previous section,
we introduced the ordinary word segmentation. As noted in the last paragraph of the
previous section, the effect of the ordinary word segmentation has a severe limitation in
most low resource languages because of the lack of a large size of labeled corpora, or
datasets.

Instead of ordinary word segmentation, an n-gram word model has often been employed.
An n-gram word model defines a word as a string of characters of n-length, and thus all
the n-gram words in a dataset are error-free by definition. However, when n is fixed, those
n-gram words are far from ordinary words, and the number of n-gram words is usually
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much larger than the number of the ordinary words in the same dataset. In order to reduce
these issues, we propose a variable-length n-gram-based word segmentation. A variable-
length n-gram-based word segmentation varies n. According to manual observations of
the target language, the maximum nmax and the minimum nmin is set, which is the only
part to consult the language characteristics of the target language. Then, n-gram word
pick-up is conducted first from nmax by choosing sufficiently frequent nmax-gram words.
Every selected nmax-gram word is rewritten as Xmax in the dataset. The next step chooses
(nmax−1)-gram words of sufficient frequency, and they are rewritten as Xmax−1. The same
procedure is repeated until nmin. With this iterative procedure, selected n-gram words are
more similar to ordinary words and the total number of selected n-gram words is much
smaller than the number of n-gram words of a fixed length. In this paper, according to
the characteristics of the Burmese writing system as well as Burmese words, nmax is set
to be 25 and nmin to be 3. Let us illustrate this procedure in Figure 3. For a notational
convenience, Xmax is P, Xmax−1 is O, . . . and Xmin is 3.

Figure 3. Example of variable-length n-gram word string conversion

6. Sentiment Analysis of Burmese Newspaper Articles.

6.1. Data description. Newspaper articles of 7Day Daily, one of the most popular pri-
vate newspapers in Myanmar are used. The daily news of newspaper can be obtained
from its official website [7]. Among several topical sections, we collected 1,280 news only
from the Opinion group. This whole dataset is used for data processing steps. For clas-
sification, we made surveys for 500 news articles to get the opinions from the Burmese
people whether the news is positive or negative, to prepare class labels. Among 500 news,
the number of positive news is 226, negative news is 211 and neutral news is 63, and 437
news (positive and negative news among 500 news) is used for classification.

6.2. Experiment setting. We compare two ways to perform sentiment analysis of the
Burmese news articles. The general setting for both approaches is the same, summarized
in Table 1.

In Experiment I, the dataset contains 1,280 news articles which contain 1,008,274 ordi-
nary words, which is segmented into words with the CRF-based method. After removing
stop words, which is a manually prepared set of 278 words, only the words of more than
five occurrences are used. The extracted data from 1,280 news contains 642,887 words.
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Table 1. Preprocessing part of experiments

Experiment I Experiment II
1. Use all news articles (1,280 news)
2. Replace English punctuations
!"#$%&'()*+,-./:;<=>?@[U]ˆ {̀|} ∼
with a ‘space’
3. Usual Word Segmentation with CRF
(Section 4)
4. Remove English words and numbers
(both Burmese and English numbers)
5. Replace Burmese punctuation: a
comma with a ‘space’
6. Replace Burmese punctuation: a full
stop with a ‘$’
7. Remove stop words

1. Concatenate all news articles (1,280
news) and insert ‘®’ at the end of each
news
2. Replace English punctuations
!"#$%&'()*+,-./:;<=>?@[U]ˆ {̀|}∼
with ‘U’
3. Replace English words with ‘W’
4. Replace numbers (both Burmese and
English numbers) with ‘X’
5. Replace Burmese punctuations:
comma and full stop with ‘$’
6. n-gram-based word segmentation (Sec-
tion 5)
7. Remove n-gram words which have very
high frequency

Experiment II uses the same dataset as the Experiment I. During variable-length n-
gram-based word segmentation, infrequent n-gram words are removed. After the segmen-
tation process, very high frequent n-gram words are also removed as potential stop words.
After that, 1,280 news data contain 894,502 n-gram words.

The same seed word list is applied in both cases. The chosen seed words are as follows:

Positive:
[ ]

Negative:
[ ]

The translation of these seed words is:
Positive: [‘good’, ‘develop’, ‘improvement’, ‘happy’, ‘success’, ‘convenient’, ‘correct’,

‘peace’]
Negative: [‘decline’, ‘inconvenient’, ‘problem’, ‘bad’, ‘difficulty’, ‘danger’, ‘criticism’,

‘trouble’]
Note that in Experiment II, an n-gram word containing a seed word but not containing a

negative word is also regarded as the same seed word. The above seed words lists are used
for the next step, calculating the sentiment values and constructing sentiment dictionary.
For this step, LSA and SO-LSA methods are performed to calculate the sentiment values
and construct sentiment dictionary. The classification for each news is conducted in two
ways: Summation of Sentiment Values and Support Vector Machine (SVM), which is
explained in Section 3. For SVM, we compared two features: tf-idf value and sentiment
value.

Experiment II is conducted with 10-fold cross-validation.

6.3. Result and discussion. Table 2 shows the original data set and extracted data set
in each step. For the classification, 500 articles, among 1,280 articles, are used. These
500 articles are manually prepared for class labels, positive or negative, based on the
questionnaire survey of 100 Burmese people.

Tables 3 and 4 show the performance of the experiment in two different ways of clas-
sification. The results of sentiment value summation, the result using ordinary words is
better than with n-gram words in all four metrics, as shown in Table 3. This is easily
expected because the simple sentiment value summation of all sentiment words in each
article can use a more correct set of sentiment words in the case of ordinary words while
the case with n-gram words uses them in a more indirect way. On the other hand, when
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Table 2. Data description

Number of extracted
words in 500 articles

Usual words with CRF
(Experiment I)

n-gram words
(Experiment II)

Total words 115,144 223,437
Unique words 8,980 78,648

Table 3. Classification with sentiment values summation

Accuracy Precision Recall F-measure
Experiment I (Ordinary words) 73.23% 72.80% 76.99% 74.84%
Experiment II (n-gram words) 72.08% 76.00% 67.26% 71.36%

Table 4. Classification with SVM

SVM Accuracy Precision Recall F-measure
Experiment I tf-idf values 74.59% 76.11% 74.44% 75.27%

(Ordinary words) Sentiment Values 83.04% 84.35% 83.72% 84.04%
Experiment II tf-idf values 75.72% 74.57% 82.16% 78.18%
(n-gram words) Sentiment Values 84.22% 87.50% 81.76% 84.53%

SVM is applied for classification, the result tells that the n-gram word segmentation model
achieved a better performance than the ordinary word segmentation model with accuracy,
precision, and F-measure, as in Table 4. The result also shows that the use of sentiment
value of n-gram words as features achieved better results than tf-idf values. One of the
reasons of this result is that our ordinary word segmentation model is based on our tiny
dataset to train a CRF-based word segmentation classifier, and it is likely to have more
errors for the 1,280 articles dataset. Note that if one tries to improve this situation, one
has to take much larger time, cost, and efforts to prepare a larger dataset to train a CRF-
based word segmentation classifier. On the other hand, our variable-length n-gram-based
word segmentation seems to select many n-gram words that are quite similar to ordinary
words. Thus, we conclude that our proposed method is a better option for low resource
languages both in classification quality and in efficiency.

7. Conclusion. In this paper, we proposed a method to obtain variable-length n-gram
words that can be used as similar to ordinary words and evaluated this method for sen-
timent analysis. Our results show that our method achieved better results compared to
the ordinary word segmentation that is constructed with a tiny set of manually tagged
dataset, which indicates that variable-length n-gram word model is a promising method
for low resource languages because our method does not need a large annotated data or
elaborately developed word segmentation tools, and it can be applied to other languages
fairly easily.

However, the number of n-gram words that are obtained is large, which means that
many n-words that are far from ordinary words seem to be major obstacles. Therefore,
one of the future works is how to reduce the number of n-gram words and to improve the
quality of the obtained n-gram word set.
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