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Abstract. The aim of this study is to explore the interval transportation problem with
multiple objectives and develop a compromise conflict resolution approach based on the
fuzzy set theory. The two objectives of the multi-objective transportation problem are
to minimize the delivery time and to maximize the profit. The study considers the left
and the right bounds and the center of given intervals. The center and the left of profit
maximization interval can be considered as the expected value and the uncertainty of an
interval respectively. This order relation represents the decision maker’s preference for
the alternative with the higher expected value and less uncertainty. The center and the
right of delivery time minimization interval can be considered as the expected value and
the uncertainty of an interval respectively. The order relation represents the decision
maker’s preference for the alternative with the lower expected value and less uncertainty.
This study determines the optimal compromise solution of multi-objective interval trans-
portation problem with profit and delivery time objectives by using fuzzy programming
algorithm. A numerical example has been provided to illustrate the solution procedure.
Keywords: Multi-objective interval transportation problem (MITP), Compromise con-
flict resolution, Fuzzy set theory, Profit maximization, Delivery time minimization

1. Introduction. Transportation problem (TP) is a category of linear programming
problem which could be solved by applying the simplex technique’s simplified version
referred to as transportation method. Due to its main use in solving problems that
include a certain number of sources of products and a certain number of product destina-
tions, this kind of problem is often referred to as the transportation problem. The basic
transportation problem was originally developed by Hitchcock [1]. A transportation prob-
lem involves particular origins, for example, factories where products are produced, and a
demanded quantity of these manufactured products are supplied to a particular number
of destinations. It must be ensured that this is done in a way that maximizes profit or
minimizes cost. Therefore, there are manufacturing places as origins and supply places
as destinations. In some cases, the origins are called sources whereas the destinations
are referred to as sinks. El-Wahed [2] studied a multi-objective transportation problem
(MOTP) under fuzziness. As a solution algorithm to the multi-objective non-interval
transportation problem, he adopted a fuzzy programming approach and implemented
a linear membership function. As regards the studies on the solution of the multiple-
objective interval transportation problem (MITP), Keshavarz and Khorram [3] studied
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a fuzzy bi-criteria transportation problem. They used bi-level programming approach to
solve it. In their study, the left bound of interval is minimized whereas the right bound
is maximized. Furthermore, Ishibuchi and Tanaka [4] introduced the multi-objective pro-
gramming in optimization of the interval objective function. They explained the order
relation which represents the decision maker’s preference between interval profit by the
right limit, the left limit, the center and the width of an interval. Moreover, Kagade and
Bajaj [5] applied the fuzzy method for solving the multi-objective assignment problem
with interval cost. They used a hyperbolic membership function for the cost objective.
The bounds considered are center and the right bound. Patel and Dhodiya [6] under-
took to solve the MITP using the grey situation decision-making theory based on grey
numbers to maximize and minimize the objectives. They dealt with the left and right
bounds of intervals. This study proposes a fuzzy set-theoretic approach to MITP from
the conservative perspective of a decision maker. The method of structural optimization
used for solving transport problems and developed by Karganov [7], helps to avoid these
shortcomings and find a compromise solution. There were different researches regarding
this topic. However, many researchers wanted to apply to the real world, which resulted in
developing the TP with multiple objectives. Due to insufficient information regarding the
exact value of the objective, there were studies where these objectives are represented by
interval numbers. Our solution is based on the fuzzy programming technique which has
been programmed and analyzed in MATLAB. The solution approach gives a compromise
conflict resolution when increasing the number of objectives and constraints. This feature
makes the fuzzy approach more practical than the other approaches such as interactive
procedures in solving MITP. Moreover, the approach which we used solves MITP by linear
membership function to get the optimal compromise solution. It is easy to implement to
solve similar linear multi-objective programming problems.
The remainder of the paper is organized as follows. Section 2 introduces development

of MITP with profit maximization and delivery time minimization. Section 3 provides
the solution methodology for the MITP. A numerical example problem is carried out with
a proposed model from the Russian coal industry in Section 4. The conclusion appears
in Section 5.

2. Development of Multi-Objective Interval Transportation Model. We con-
structed the multi-objective interval transportation model with two objectives. Our task
is to find the optimal solution to the problem of delivering the available volume of supply
to meet demands, where we need to minimize transportation time, which is very impor-
tant in every logistic system and at the same time maximize the transportation profit.
Furthermore, an interval transportation problem constructs the data of supply, demand
and objective functions such as cost or other objectives in some intervals. Unlike the
standard transportation problem, where cost of transportation is usually fixed at one rate
for a delivery of products from certain source to certain destination, in this study we use
the concept of intervals for our objectives, because in reality these objectives may change
within some range due to many external factors. Depending on these factors, the unit
transportation cost can vary from one number to another, which can be represented as
an interval:

A = [aL, aR] = {a : aL ≤ a ≤ aR, a ∈ R}
where aL and aR are, respectively, the left and right limits of A.
Mathematical interval programming models deal with uncertainty and interval coeffi-

cients. Interval transportation problems construct the data of supply, demand and objec-
tive functions such as cost, and time in some intervals. This problem can be converted
into a classical transportation problem by using the concept of right limit, half-width,
left limit, and center of an interval. The MITP model is designed to find a solution to
a transportation problem with multiple objectives at the same time. Typically, it seeks



ICIC EXPRESS LETTERS, VOL.13, NO.4, 2019 327

to achieve the objective of minimizing total cost as one of its several objectives. Other
objectives could be a quantity of goods delivered, the safety of delivery, delivery time,
etc. The following is a mathematical formulation of an MITP:

Minimize z1 =
m∑
i=1

n∑
j=1

[
c1Lij

, c1Rij

]
xij (1)

Minimize zk =
m∑
i=1

n∑
j=1

[
ckLij

, ckRij

]
xij where k = 1, 2, . . . , K (2)

Subject to
m∑
i=1

xij = bj, j = 1, 2, . . . , n for all j (3)

n∑
j=1

xij = ai, i = 1, 2, . . . ,m for all i (4)

m∑
i=1

ai =
n∑

j=1

bj

xij ≥ 0 for all i and j (5)

where
[
ckLij

, ckRij

]
(k = 1, 2, . . . , K) is an interval representing the uncertain cost for the

transportation problem. In the MITP a product is to be transported from m sources
to n destinations and their capacities are a1, a2, . . . , am and b1, b2, . . . , bn, respectively. In
addition, there is a penalty Cij associated with transporting a unit of product from source
i to destination j. This penalty may be cost or delivery time, etc. A decision variable
xij represents the unknown quantity to be shipped from source i to destination j. Here,

cLij
=

(
c1Lij

, c2Lij
, . . . , ckLij

)
and, cRij

=
(
c1Rij

, c2Rij
, . . . , ckRij

)
represent, respectively, the

left bound and right bound of Cij which represents the coefficients related to variable for
objective k. Without loss of generality, the following notations are also used: m – number
of sources; n – number of destinations; ai – supply at source i.

The profit and delivery time objectives can be considered as the maximization or min-
imization of the worst and the average case respectively.

Order relations for profit maximization problem
This order relation ≤LR represents the decision maker’s preference for the alternative

with the higher minimum profit and maximum profit. There are many pairs of intervals
which cannot be compared by left and right bounds. In order to represent the intuition,
the order relation by the center and width of the interval is defined

fL(x) =
m∑
i=1

n∑
j=1

ΩCij
xij −

m∑
i=1

n∑
j=1

ΩWij
xij fC(x) =

m∑
i=1

n∑
j=1

Ωijxij (6)

Since the center and the width of the interval can be considered as the expected value
and the uncertainty of an interval respectively, this order relation represents the decision
maker’s preference for the alternative with the higher expected value and less uncertainty.

Order relations for delivery time minimization problem

fR(x) =
m∑
i=1

n∑
j=1

tCij
xij +

m∑
i=1

n∑
j=1

tWij
xij fC(x) =

m∑
i=1

n∑
j=1

tijxij (7)

The order relation <CW represents the decision maker’s preference for the alternative
with the lower expected value and less uncertainty, that is, if A <CW B, then interval A
is preferred to interval B.
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3. Solution Methodology. In order to determine the compromise solution of MITP
with profit and delivery time objectives, we used a fuzzy set approach. Firstly, assign,
for each objective, two values Uk and Lk as upper and lower bounds, respectively, for the
kth objective.

• Lk is the aspired level of achievement for the objective k
• Uk is the highest acceptable level for achievement for the objective k
• dk = Uk − Lk is the degradation allowance for the objective k

Once the aspiration levels and degradation allowance for each objective have been
specified, we have formed the fuzzy model. The main steps of the fuzzy programming
technique are as follows [5].
Step 1. Pick the 1st objective function and solve it as a single objective transportation

problem. Continue this process k times for k different objective functions.
Step 2. Evaluate the kth objective function at the K optimal solutions (k = 1, 2, . . .,

K). For each objective function, determine Lk and Uk from set of optimal solutions.
Step 3. Define the membership function

µk

(
F k(x)

)
=


1 if F k(x) ≤ Lk,

Uk − F k(x)

Uk − Lk

if Lk < F k(x) < Uk,

0 if F k(x) ≥ Uk,

(8)

where Lk ̸= Uk, k = 1, 2, . . . , K. If Lk = Uk, then µk

(
F k(x)

)
= 1 for any value of k.

Step 4. Construct the fuzzy programming problem and its equivalent linear program-
ming (LP) problem.

Max mink=1,2,...,K µk

(
F k(x)

)
Subject to
n∑

j=1

xij = ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = bj, j = 1, 2, . . . , n,

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . .,
n.

Max β(Auxiliary variable)
Subject to
β ≤ µk

(
F k(x)

)
, β (Uk − Lk) ≤

(
Uk − F k(x)

)
k = 1, 2, . . . , K, β (Uk − Lk) + F k(x) ≤ Uk,
β (Uk − Lk)

Uk

+

(
1

Uk

)
F k(x) ≤ 1

n∑
j=1

xij = ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = bj, j = 1, 2, . . . , n,

0 ≤ β ≤ 1, xij ≥ 0 ∀i, j.
Step 5. Solve linear programming (LP) by using an integer programming technique

to get an optimal solution and evaluate the K objective functions at this compromise
solution.

4. Numerical Example. An illustrative example is carried out to explain the proposed
approach and to evaluate its appropriateness. However, it reflects an empirical study for
a Russian coal company. Russia is the 3rd largest country for coal reserves in the global
coal industry. It accounts for 27% of the whole world’s coal reserves. Moreover, Russia is
the 6th largest country for coal production with an annual production of 250 million tons
of coal. Russia mainly exports coal to four directions: Far East (to countries in Asia such
as China, Korea, and Japan), North Europe, West Europe through Baltic Sea and Black
Sea (to countries such as Turkey). Based on transportation delivery time and profit, the
coal company should decide to which directions and in which quantity it is better to sell
coal. Figure 1 shows locations of coal mines in Russia and the export destinations.
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Figure 1. The locations of coal mines in Russia and the export destinations

The input data is collected form Patel and Dhodiya’s study [6] for further comparison.
Tables 1 and 2 show data on delivery times and profit, respectively. Note that MT is
denoted as million ton.

Table 1. 1st objective: minimization of delivery time

Far East Baltic Sea Black Sea N. Europe Supply (MT)
Mine 1 [1, 2] [1, 3] [5, 9] [4, 8] 8
Mine 2 [1, 2] [7, 10] [2, 6] [3, 5] 19
Mine 3 [7, 9] [7, 11] [3, 5] [5, 7] 17

Demand (MT) 11 3 14 16

Table 2. 2nd objective: maximization of profit

Far East Baltic Sea Black Sea N. Europe Supply (MT)
Mine 1 [3, 5] [2, 6] [2, 4] [1, 5] 8
Mine 2 [4, 6] [7, 9] [7, 10] [9, 11] 19
Mine 3 [4, 8] [1, 3] [3, 6] [1, 2] 17

Demand (MT) 11 3 14 16

The solution to this MITP will be found using the fuzzy programming approach and it
consists of the following steps.

Step 1. Each objective function needs to be solved as a single-objective transportation
problem (right bound for delivery time and left bound for profit). For the first objective,
minimization of delivery time, the right bounds of intervals are taken as it is illustrated
in Table 3. For the second objective of profit maximization, the left bounds of intervals
are considered, which is shown in Table 4.

Table 3. Right bound for the 1st objective

Far East Baltic Sea Black Sea N. Europe Supply (MT)
Mine 1 2 3 9 8 8
Mine 2 2 10 6 5 19
Mine 3 9 11 5 7 17

Demand (MT) 11 3 14 16
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Table 4. Left bound for the 2nd objective

Far East Baltic Sea Black Sea N. Europe Supply (MT)
Mine 1 3 2 2 1 8
Mine 2 4 7 7 9 19
Mine 3 4 1 3 1 17

Demand (MT) 11 3 14 16

Table 5. Center for the 1st objective

Far East Baltic Sea Black Sea N. Europe Supply (MT)
Mine 1 1,5 2 7 6 8
Mine 2 1,5 8,5 4 4 19
Mine 3 8 9 4 6 17

Demand (MT) 11 3 14 16

Table 6. Center for the 2nd objective

Far East Baltic Sea Black Sea N. Europe Supply (MT)
Mine 1 4 4 3 3 8
Mine 2 5 8 8,5 10 19
Mine 3 6 2 4,2 1,5 17

Demand (MT) 11 3 14 16

Furthermore, every objective function needs to be solved as a single-objective trans-
portation problem for the center. Tables 5 and 6 incorporate the center of intervals.
Center for each cell is found as an average of left and right bounds of intervals.
Then each of these 4 matrixes can be solved as a standard transportation problem.
Step 2. This step comprises determination of each objective’s upper and lower bounds

(Lk and Uk) according to the set of optimal solutions.

F 1
(
X tR

)
= (187, 187, 226, 281), F 2

(
X tC

)
= (149, 149, 182, 229),

F 3
(
XpL

)
= (207, 207, 243, 243), F 4

(
XpC

)
= (260, 260, 303, 306).

From the above pay-off matrix, the following lower and upper limits are established, i.e.:

149 ≤ F 1
(
X tR

)
≤ 260; 149 ≤ F 2

(
X tC

)
≤ 260;

182 ≤ F 3
(
XpL

)
≤ 303; 229 ≤ F 4

(
XpC

)
≤ 306,

where F 1
(
X tR

)
is the objective function for the time with right bound, F 2

(
X tC

)
is the

objective function for the time with the center, F 3
(
XpL

)
is the objective function for the

profit with left bound, and F 4
(
XpC

)
is the objective function for the profit with center.

Step 3. The next task is the definition of the membership function µ of objective
functions. The upper and lower bounds of each objective function can be written as
follows:

µ1

(
F 1

(
X tR

))
=


1 if F 1(x) ≤ 149

260− F 1(x)

111
if 149 < F 1(x) < 260

0 if F 1(x) ≥ 260

(9)

µ2

(
F 2

(
X tC

))
=


1 if F 2(x) ≤ 149

260− F 2(x)

111
if 149 < F 2(x) < 260

0 if F 2(x) ≥ 260

(10)
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µ3

(
F 3

(
XpL

))
=


1 if F 3(x) ≤ 182

303− F 3(x)

121
if 182 < F 3(x) < 303

0 if F 3(x) ≥ 303

(11)

µ4

(
F 4

(
XpC

))
=


1 if F 4(x) ≤ 229

306− F 4(x)

77
if 229 < F 4(x) < 306

0 if F 4(x) ≥ 306

(12)

Step 4. The following thing to do is the construction of the fuzzy programming problem
and its equivalent LP (linear programming) problem. By introducing an auxiliary variable
β, fuzzy programming problem can be transformed into the following equivalent linear
programming (LP) problem: problem: xij – amount of detail j type (for j consumer),
produced on i tool (delivered by i supplier).

Max β (13)

Subject to

x11 + x12 + x13 + x14 = 8 (14)

x21 + x22 + x23 + x24 = 19 (15)

x31 + x32 + x33 + x34 = 17 (16)

x11 + x21 + x31 = 11 (17)

x12 + x22 + x32 = 3 (18)

x13 + x23 + x33 = 14 (19)

x14 + x24 + x34 = 16 (20)

2x11 + 3x12 + 9x13 + 8x14 + 2x21 + 10x22 + 6x23 + 5x24 + 9x31

+11x32 + 5x33 + 7x34 + 111β ≤ 260 (21)

1.5x11 + 2x12 + 7x13 + 6x14 + 1.5x21 + 8.5x22 + 4x23 + 4x24 + 8x31

+9x32 + 4x33 + 6x34 + 111β ≤ 260 (22)

3x11 + 2x12 + 2x13 + x14 + 4x21 + 7x22 + 7x23 + 9x24 + 4x31 + x32

+3x33 + x34 + 121β ≤ 303 (23)

4x11 + 4x12 + 3x13 + 3x14 + 5x21 + 8x22 + 8.5x23 + 10x24 + 6x31

+2x32 + 4.5x33 + 1.5x34 + 77β ≤ 306 (24)

Step 5. The last step is to solve this linear programming problem to get an optimal
solution and evaluate the objective functions of delivery time and profit. In this study,
Matlab has been used for programming the problem. After solving the problem the
following results have been obtained as X = [4, 3, 0, 1, 7, 0, 0, 12, 0, 0, 14, 3] in Table 7.

The function values for each objective are delivery time = [151, 190] and Profit =
[200, 254], respectively. At this time the overall satisfaction β becomes 0.6306.

Table 7. The compromise solution for MITP

Far East Baltic Sea Black Sea N. Europe Supply
Mine 1 4 3 0 1 8
Mine 2 7 0 0 12 19
Mine 3 0 0 14 3 17
Demand 11 3 14 16
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5. Conclusion. This study proposed a compromise conflict resolution approach to the
transportation problem with multiple objectives, namely, by minimizing the delivery time
and maximizing the profit. The problem was converted into a classical multi-objective
transportation problem where in order to achieve the delivery time objective the right
limit and center of the interval are minimized, and to achieve the profit objective the
left limit and center of the interval are maximized. These objective functions are consid-
ered as the minimization or maximization of the worst case and the average case. This
compromise solution was found based on the fuzzy set theory and analyzed in MATLAB.
In addition, the model was simulated for the case from Russian coal company, which
shows the compromise solution is more acceptable in a real-world situation when more
than one objective needs to be achieved in transporting a product. Further studies can
be conducted to provide comparisons between this study and other previous approaches
previous and to apply it to solving the real-world transportation problem.
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