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Abstract. The exponential passive filtering problem for discrete-time genetic regulatory
networks with random and distributed delays is investigated. By introducing an appro-
priate Lyapunov function and Linear Matrix Inequalities (LMIs), a sufficient condition
is obtained to ensure the filtering error system is strictly exponentially passive with dis-
sipation γ > 0. A numerical example is presented to illustrate the effectiveness of the
theoretical result.
Keywords: Exponential passive filtering, Genetic Regulatory Networks (GRNs), Ran-
dom delays, Distributed delays

1. Introduction. Genetic Regulatory Networks (GRNs), structured by networks of reg-
ulatory interactions among DNA, mRNA, proteins inhibiting the expression of other genes
in order to gain insight into the underlying processes of living systems at the molecular
level, have become a crucially important new area of research issue in the biological and
biomedical sciences. Recently, a number of different mathematical modelings for GRNs
have been proposed. In general, genetic network models can be classified into two types,
that is, the discrete model [1, 2] and the continuous model [3, 4]. From these two types
of models, biologists hope to obtain actual concentrations of gene products (mRNA and
proteins).

In practice, the steady-state values (concentrations of gene products) of the actual
GRNs can hardly be obtained. In order to obtain the steady-state values based on avail-
able measurement date, the filtering technology has been introduced to solve these prob-
lems [5, 6]. A number of filters for functional differential equation models have been con-
sidered by some scholars (see, e.g., [7, 8, 9]). Although many results of filtering for GRNs
have been proposed, they just consider the continuous-time GRNs model. However, due
to the requirement for computer simulation, the design of filter for delayed discrete-time
GRNs is of vital importance (see, for instance, [10, 11, 12] and references therein). The
set-values filtering for a class of discrete-time GRNs with time-varying parameters, con-
stant delays, and bounded external noise is investigated in [10]. In [11, 12], authors have
designed a filter ensuring that the filtering error system is stochastically stable and has a
prescribed H∞ performance. In [13], a class of discrete-time GRNs with parameter uncer-
tainties, time delays, molecular noise and missing values is considered. A set-membership
filtering method is proposed to estimate the states of the underlying GRNs. So far, to
the author’s knowledge, the exponential passive filtering problem of GRNs has little been
studied in the literature. This situation motivates the present investigation.
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In this paper, we will design an exponentially passive filter for a class of GRNs with
discrete and distributed delays. Based on passivity theory [14] and Lyapunov stability
theory [15], a sufficient LMI condition is first established to ensure that the filtering error
system is strictly exponentially passive with dissipation γ. Finally, a numerical example
is given to show the effectiveness of the proposed approach.
Notation. E{·} denotes the expectation operator with respect to some probability mea-

sure; ∥ · ∥ represents the Euclidean norm for a vector, and the spectral norm for a matrix;
λmax(A) (respectively, λmin(A)) denotes the largest (respectively, smallest) eigenvalue of
A; Rn denotes the n-dimensional Euclidean space; N [a, b] = {a, a + 1, . . . , b}; diag(·)
denotes the diagonal matrix.

2. Problem Formulation. Consider a class of discrete-time GRNs with discrete and
distributed delays, which can be described as:

xm(k + 1) = Axm(k) + Bg(xp(k − d(k))) + Cg(xp(k)) +D

d1∑
m=1

g(xp(k −m))

+E1w(k),

xp(k + 1) = Fxp(k) +Gxm(k − d(k)) + F1v(k),

ym(k) = A1xm(k) + C1g(xp(k)) + E2w(k),

yp(k) = A2xp(k) + F2v(k),

zm(k) = G1xm(k) + E3w(k),

zp(k) = G2xp(k) + F3v(k),

xm(k) = θm(k), xp(k) = θp(k), k ∈ N [−d, 0],

(1)

where xm(k) = [xm1(k) . . . xmn(k)]
T , xp(k) = [xp1(k) . . . xpn(k)]

T , where xmi(k) and xpi(k)
∈ R are the concentrations of mRNA and protein of the ith gene, respectively; ym(k) =
[ym1(k) . . . ymq1(k)]

T and yp(k) = [yp1(k) . . . ypq2(k)]
T represent the expression levels of m-

RNAs and proteins, respectively; zm(k) = [zm1(k) . . . zml1(k)]
T and zp(k) = [zp1(k) . . .

zpl2(k)]
T are the signals to be estimated; both w(k) and v(k) are exogenous distur-

bance signals; θm(k) and θp(k) are the initial conditions of xm(k) and xp(k), respectively;
g(x(k)) = [g1(x1(k)) . . . gn(xn(k))]

T , where gi(xi(k)) denotes the activation function of the
ith gene; A, B, C, D, F , G, A1, A2, C1, E1, E2, E3, F1, F2, F3, G1 and G2 are constant
matrices of appropriate sizes; d(k) denotes the random time delay of mRNAs and protein-
s, and is assumed to be a Markov chain with state space N := {1, 2, . . . , d2}; d1 describes
the distributed time delay, d = max{d1, d2}; π := [πij] the transition probability matrix
of d(k), where πij = Prob{d(k + 1) = j|d(k) = i}.
Usually, in complex GRNs, only part of the information of the network components

can be obtained. Therefore, to obtain the true states of the GRNs, we need to estimate
them from available measurements [16]. The full order linear filter to be designed takes
the following form 

x̂m(k + 1) = Af x̂m(k) +Bfym(k),

x̂p(k + 1) = Cf x̂p(k) +Dfyp(k),

ẑm(k) = G1f x̂m(k) +H1fym(k),

ẑp(k) = G2f x̂p(k) +H2fyp(k),

x̂m(k) = 0, x̂p(k) = 0, k ∈ N [−d, 0],

(2)

where x̂m(k), x̂p(k), ẑm(k) and ẑp(k) are the estimates of xm(k), xp(k), zm(k) and zp(k),
respectively; Af , Bf , Cf , Df , G1f , G2f , H1f and H2f are unknown filter parametric
matrices of appropriate dimensions.
Denote

x̃m(k) =

[
xm(k)
x̂m(k)

]
, x̃p(k) =

[
xp(k)
x̂p(k)

]
, em(k) = zm(k)− ẑm(k), ep(k) = zp(k)− ẑp(k).
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Then the filtering error system can be expressed as

x̃m(k + 1) = Āx̃m(k) + B̄g(Zx̃p(k − d(k))) + C̄g(Zx̃p(k))

+ D̄

d1∑
m=1

g(Zx̃p(k −m)) + Ē1w(k),

x̃p(k + 1) = F̄ x̃p(k) + ḠZx̃m(k − d(k)) + F̄1v(k),

em(k) = Ḡ1f x̃m(k) + C̄1g(Zx̃p(k)) + H̄1fw(k),

ep(k) = Ḡ2f x̃p(k) + H̄2fv(k),

x̃m(k) = θ̃m(k), x̃p(k) = θ̃p(k), k ∈ N [−d, 0],

(3)

where

θ̃m(k) =

[
θm(k)
0

]
, θ̃p(k) =

[
θp(k)
0

]
, Ā =

[
A 0

BfA1 Af

]
, B̄ =

[
B
0

]
,

C̄ =

[
C

BfC1

]
, D̄ =

[
D
0

]
, F̄ =

[
F 0

DfA2 Cf

]
, Ē1 =

[
E1

BfE2

]
, F̄1 =

[
F1

DfF2

]
,

Ḡ =

[
G
0

]
, C̄1 = −H1fC1, Ḡ1f =

[
G1 −H1fA1 −G1f

]
,

Ḡ2f =
[
G2 −H2fA2 −G2f

]
, H̄1f = E3 −H1fE2, H̄2f = F3 −H2fF2, Z =

[
I 0

]
.

For convenience, for a nonnegative integer k we define

Θk = {x̃m(k), x̃m(k − 1), . . . , x̃m(k − d2), x̃p(k), x̃p(k − 1), . . . , x̃p(k − d2)}.

Assumption 2.1. The activation functions gi (i = 1, 2, . . . , n) satisfy,

gi(0) = 0, 0 ≤ gi(s1)− gi(s2)

s1 − s2
≤ li, ∀s1, s2 ∈ R, s1 ̸= s2,

where li is a given constant.

The next definitions and lemmas are introduced, which will be used in the proof of the
following theorems.

Definition 2.1. The filtering error system (3) with w(k) = 0 and v(k) = 0 is said to be
exponentially stable if there exist two constants α > 0 and 0 < β < 1 such that

E
{
∥ x̃m(K) ∥2 + ∥ x̃p(K) ∥2

∣∣Θ0, d(0)
}

≤ αβK sup
s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2

∣∣Θ0, d(0)
}
, ∀K ≥ 0 (4)

for every initial mode d(0) and every initial state Θ0.

Definition 2.2. The filtering error system (3) is said to be strictly exponentially passive
with γ > 0, if system (3) is exponentially stable when w(k) = 0 and v(k) = 0, and under
the zero initial condition, the following relation holds

2
K∑
k=0

E

{[
em(k)
ep(k)

]T [
w(k)
v(k)

]∣∣∣∣∣Θ0, d(0)

}

≥ −γ
K∑
k=0

E

{[
w(k)
v(k)

]T [
w(k)
v(k)

]∣∣∣∣∣Θ0, d(0)

}
, ∀K ≥ 0 (5)

for all nonzero w(k) or v(k).
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Lemma 2.1. For given a pair of positive integers d and T , and a pair of sequences {ak}
and {bi}, if all of the following sums are well defined, then the following statements (i)
and (ii) are true.

(i)
T−1∑
k=0

k−1∑
i=k−d

akbi =
−1∑

i=−d

i+d∑
k=0

akbi +
T−d−1∑
i=0

i+d∑
k=i+1

akbi +
T−2∑

i=T−d

T−1∑
k=i+1

akbi, when T ≥ d;

(ii)
T−1∑
k=0

k−1∑
i=k−d

akbi =
T−1−d∑
i=−d

i+d∑
k=0

akbi +
−1∑

i=T−d

T−1∑
k=0

akbi +
T−2∑
i=0

T−1∑
k=i+1

akbi, when T < d.

The proof of Lemma 2.1 is omitted, since it can be easily presented by changing the
order of summation.

3. Stability Analysis and Passivity Filter Design. An exponential stability criterion
for the filtering error system (3) with w(k) = 0 and v(k) = 0 is presented in the following
theorem.

Theorem 3.1. The filtering error system (3) with w(k) = 0 and v(k) = 0 is exponentially
stable, if there exist matrices P T

i (r) = Pi(r) > 0, QT
i (r) = Qi(r) > 0 (i = 1, 2, 3, r ∈ N ),

P T
j = Pj > 0 (j = 2, 3), QT

j = Qj > 0 (j = 2, 3, 4), ς := diag(ς1, ς2, . . . , ςn) > 0 and
µ := diag(µ1, µ2, . . . , µn) > 0 such that the following matrix inequalities hold,

Ω(r) := Ω̃(r) + Ω̂(r) < 0, r ∈ N , (6)

P̄i(r) < Pi, Q̄i(r) < Qi, i = 2, 3, r ∈ N , (7)

where

Ω̂(r) = ΛT
1 P̄1(r)Λ1 + ΛT

2 ϕ1(r)Λ2 + ΛT
3 Q̄1(r)Λ3, Ω̃(r) =

3∑
i=1

[Ωmi(r) + Ωpi(r)] +
5∑

i=4

Ωpi,

Λ1 = Āe1 + B̄e5 + C̄e3 + D̄e6, Λ2 = Λ1 − e1, Λ3 = F̄ e2 + ḠZe4,

Ωm1(r) = −eT1 P1(r)e1, Ωm3(r) = −1

r
ẽT1 P̃3(r)ẽ1, Ωp4 = d1e

T
3Q4e3 −

1

d1
eT6Q4e6,

Ωm2(r) = eT1
[
P̄2(r) + (d2 − 1)P2

]
e1 − eT4

(
P2(r) + P̄2(r)− P2

)
e4 −

1

r
eT8

(
P2 − P̄2(r)

)
e8,

Ωp1(r) = −eT2Q1(r)e2, Ωp3(r) = (e7 − e3)
Tϕ2(r)(e7 − e3)−

1

r
ẽT3 Q̃3(r)ẽ3,

Ωp2(r) = eT3
[
Q̄2(r) + (d2 − 1)Q2

]
e3 − eT5

(
Q2(r) + Q̄2(r)−Q2

)
e5 −

1

r
eT9

(
Q2 − Q̄2(r)

)
e9,

Ωp5 = −eT3 ςe3 − eT2Z
T ςLe3 − eT3LςZe2 − e7µe7 − ΛT

3Z
TµLe7 − eT7LµZΛ3,

L =
1

2
diag(−l1,−l2, . . . , ln), P̄i(r) =

d2∑
s=1

πrsPi(s), Q̄i(r) =

d2∑
s=1

πrsQi(s), i = 1, 2, 3,

ei =
[
02n×(i−1)2n I2n 02n×(9−i)2n

]T
, i = 1, 2, 4, 8,

ei =
[
0n×(i−1)n In 0n×(9−i)n

]T
, i = 3, 5, 6, 7, 9,

ẽ1 =

[
e1 − e4

r−1
r+1

e1 + e4 − 2
r+1

e8

]
, P̃3(r) =

[
P3 + P3(r) 0

0 3(P3 + P3(r))

]
,

ẽ3 =

[
e3 − e5

r−1
r+1

e3 + e5 − 2
r+1

e9

]
, Q̃3(r) =

[
Q3 +Q3(r) 0

0 3(Q3 +Q3(r))

]
,

ϕ1(r) = d2P̄3(r) +
d22 + d2

2
P3, ϕ2(r) = d2Q̄3(r) +

d22 + d2
2

Q3.
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Proof: Choose a Lyapunov functional candidate for the filtering error system (3) with
w(k) = 0 and v(k) = 0 as follows:

V (Θk, k, d(k)) =
3∑

i=1

Vm,i(Θk, k, d(k)) +
4∑

i=1

Vp,i(Θk, k, d(k)) (8)

with

Vm,1(Θk, k, d(k)) = x̃T
m(k)P1(d(k))x̃m(k), Vp,1(Θk, k, d(k)) = x̃T

p (k)Q1(d(k))x̃p(k),

Vm,2(Θk, k, d(k)) =
k−1∑

i=k−d(k)

x̃T
m(i)P2(d(k))x̃m(i) +

−1∑
j=−d2+1

k−1∑
i=k+j

x̃T
m(i)P2x̃m(i),

Vp,2(Θk, k, d(k)) =
k−1∑

i=k−d(k)

gT (Zx̃p(i))Q2(d(k))g(Zx̃p(i))

+
−1∑

j=−d2+1

k−1∑
i=k+j

gT (Zx̃p(i))Q2g(Zx̃p(i)),

Vm,3(Θk, k, d(k)) =
−1∑

j=−d(k)

k−1∑
i=k+j

ηT (i)P3(d(k))η(i) +
−1∑

j=−d2

−1∑
l=j

k−1∑
i=k+l

ηT (i)P3η(i),

Vp,3(Θk, k, d(k)) =
−1∑

j=−d(k)

k−1∑
i=k+j

ζT (i)Q3(d(k))ζ(i) +
−1∑

j=−d2

−1∑
l=j

k−1∑
i=k+l

ζT (i)Q3ζ(i),

Vp,4(Θk, k, d(k)) =
−1∑

j=−d1

k−1∑
i=k+j

gT (Zx̃p(i))Q4g(Zx̃p(i)),

η(k) = x̃m(k + 1)− x̃m(k), ζ(k) = g(Zx̃p(k + 1))− g(Zx̃p(k)).

By taking the forward difference of the functional V (Θk, k, d(k)) along with the trajecto-
ries of system (3), one can obtain that ∆V (k) = E{V (Θk+1, k + 1, d(k + 1)) | Θk, d(k) =
r} − V (Θk, k, r).

∆Vm1(k) = ξT (k)
(
ΛT

1 P̄1(r)Λ1 + Ωm1(r)
)
ξ(k). (9)

Additionally, it can be verified from (7) and discrete Wirtinger-based inequality that

∆Vm2(k) ≤ ξT (k)Ωm2(r)ξ(k), (10)

∆Vm3(k) ≤ ξT (k)
(
ΛT

2 ϕ1(r)Λ2 + Ωm3(r)
)
ξ(k), (11)

∆Vp1(k) = ξT (k)
(
ΛT

3 Q̄1(r)Λ3 + Ωp1(r)
)
ξ(k), (12)

∆Vp2(k) ≤ ξT (k)Ωp2(r)ξ(k), (13)

∆Vp3(k) ≤ ξT (k)Ωp3(r)ξ(k), (14)

∆Vp4(k) ≤ ξT (k)Ωp4ξ(k). (15)

In view of Assumption 2.1, we can derive that

ξT (k)Ωp4ξ(k) ≥ 0. (16)

Now, from (9)-(16), we derive

∆V (k) ≤ ξT (k)Ω(r)ξ(k), (17)
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where

ξ(k) =

[
x̃T
m(k) x̃T

p (k) gT (Zx̃p(k)) x̃T
m(k − r) gT (Zx̃p(k − r))

d1∑
m=1

gT (Zx̃p(k −m)) gT (Zx̃p(k + 1))
k−1∑

i=k−r

x̃T
m(i)

k−1∑
i=k−r

gT (Zx̃p(i))

]T
.

Due to (6), Formula (17) results in

∆V (k) ≤ −λmin(−Ω) {∥ x̃m(k) ∥2 + ∥ x̃p(k) ∥2} , (18)

where λmin(−Ω) = min
r∈N

(−λmin(Ω(r))).

On the other hand, it follows from (8) that

V (Θk, k, r) ≤ ρ1
{
∥ x̃m(k) ∥2 + ∥ x̃p(k) ∥2

}
+ ρ2

k−1∑
i=k−d

{
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2

}
+ ρ3

k−1∑
i=k−d

{
∥ x̃m(i+ 1) ∥2 + ∥ x̃p(i+ 1) ∥2

}
, (19)

where λmax(·) denotes the maximal eigenvalue of matrix,

φ1 = λmax(P2(r)) + (d2 − 1)λmax(P2) + φ2, φ2 = 2d2λmax(P3(r)) + (d22 + d2)λmax(P3),

φ3 = 4λmax(Q2(r))λmax

(
LTL

)
+ 4(d2 − 1)λmax(Q2)λmax

(
LTL

)
+ φ4

+4d1λmax(Q4)λmax

(
LTL

)
,

φ4 = 8d2λmax(Q3(r))λmax

(
LTL

)
+ 4

(
d22 + d2

)
λmax(Q3)λmax

(
LTL

)
,

ρ1 = max{λmax(P1(r)), λmax(Q1(r))}, ρ2 = max{φ1, φ3}, ρ3 = max{φ2, φ4}.
For a scalar θ > 1, it follows from (18) and (19) that

θk+1E{V (Θk+1, k + 1, d(k + 1)) | Θk, d(k) = r} − θkV (Θk, k, r)

≤
(
θk(θ − 1)ρ1 − θk+1λmin(−Ω)

) (
∥ x̃m(k) ∥2 + ∥ x̃p(k) ∥2

)
+ ρ2θ

k(θ − 1)
k−1∑

i=k−d

(
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2

)
+ ρ3θ

k(θ − 1)
k−1∑

i=k−d

(
∥ x̃m(i+ 1) ∥2 + ∥ x̃p(i+ 1) ∥2

)
. (20)

Since

E{E{V (Θk+1, k + 1, d(k + 1)) | Θk, d(k)} | Θ0, d(0)}
= E{V (Θk+1, k + 1, d(k + 1)) | Θ0, d(0)},

by taking the conditional expectation E{·|Θ0, d(0)}, and then summing from k = 0 to
k = K − 1 on both sides of (20), we obtain

θKE{V (ΘK , K, d(K)) | Θ0, d(0)} − V (Θ0, 0, d(0))

≤ [(θ − 1)ρ1 − θλmin(−Ω)]
K−1∑
k=0

θkE
{
∥ x̃m(k) ∥2 + ∥ x̃p(k) ∥2| Θ0, d(0)

}
+(θ − 1)ρ2

K−1∑
k=0

k−1∑
i=k−d

θkE
{
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2| Θ0, d(0)

}
+(θ − 1)ρ3

K−1∑
k=0

k−1∑
i=k−d

θkE
{
∥ x̃m(i+ 1) ∥2 + ∥ x̃p(i+ 1) ∥2| Θ0, d(0)

}
. (21)
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Due to Lemma 2.1, it is easy to compute that

K−1∑
k=0

k−1∑
i=k−d

θkE
{
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2| Θ0, d(0)

}
≤ d2θd sup

s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2| Θ0, d(0)

}
+ dθd

K−2∑
i=0

θiE
{
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2| Θ0, d(0)

}
. (22)

Similarly, we have

K−1∑
k=0

k−1∑
i=k−d

θkE
{
∥ x̃m(i+ 1) ∥2 + ∥ x̃p(i+ 1) ∥2| Θ0, d(0)

}
≤ d2θd sup

s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2| Θ0, d(0)

}
+ dθd

K−1∑
i=1

θiE
{
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2| Θ0, d(0)

}
. (23)

From (19), we obtain

V (Θ0, 0, d(0)) ≤ (ρ1 + ρ2d+ ρ3d) sup
s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2| Θ0, d(0)

}
. (24)

It follows from (21)-(24) that

θKE{V (ΘK , K, d(K)) | Θ0, d(0)} ≤ L1(θ) sup
s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2

}
+L2(θ)

K−1∑
i=0

θiE
{
∥ x̃m(i) ∥2 + ∥ x̃p(i) ∥2

}
, (25)

where

L1(θ) = ρ1 + ρ2d+ ρ3d+ (θ − 1)ρ2d(d+ 1)θd + (θ − 1)ρ3d(d+ 1)θd,

L2(θ) = (θ − 1)ρ1 − θλmin(−Ω) + (θ − 1)ρ2dθ
d + (θ − 1)ρ3dθ

d.

Since L2(1) < 0, by the continuity of L2(θ) we can choose a scalar ~ > 1 such that
L2(~) ≤ 0. Obviously, L1(~) > 0. From (25), we have

~KE{V (Θk, k, d(k)) | Θ0, d(0)} ≤ L1(~) sup
s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2

}
. (26)

From (8), we can obtain

E{V (ΘK , K, d(K)) | Θ0, d(0)} ≥ ρ̄1E
{
∥ x̃m(K) ∥2 + ∥ x̃p(K) ∥2| Θ0, d(0)

}
, (27)

where

ρ̄1 = min{λmin(P1(1)), λmin(Q1(1)), . . . , λmin(P1(d2)), λmin(Q1(d2))}.

Let α = L1(~)
ρ̄1

and β = 1
~ . Then α > 0 and 0 < β < 1. It follows from (26) and (27) that

E
{
∥ x̃m(K) ∥2 + ∥ x̃p(K) ∥2

∣∣Θ0, d(0)
}

≤ αβT sup
s∈N [−d,0]

E
{
∥ x̃m(s) ∥2 + ∥ x̃p(s) ∥2

∣∣Θ0, d(0)
}
.

Therefore, by Definition 2.1, the delayed discrete-time filter error system (3) with w(k) = 0
and v(k) = 0 is exponentially stable, which completes the proof.
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Remark 3.1. Compared with [18, Theorem 3.1], we use the so-called Wirtinger’s in-
equality (see [19, Lemma 1]) instead of the Jensen’s inequality to estimate the forward
differences of Vm,3(Θk, k, d(k)) and Vp,3(Θk, k, d(k)), which can obtain less conservative
results.

Similar to [18, Theorem 3.2], the following result can be easily obtained, which gives a
method to design the filter in the form of (2).

Theorem 3.2. For given a scalar γ > 0 and a pair of positive integers d1 and d2, if for
each r ∈ N , there exist matrices P T

i (r) = Pi(r) > 0, QT
i (r) = Qi(r) > 0 (i = 1, 2, 3),

P T
j = Pj > 0 (j = 2, 3), QT

j = Qj > 0 (j = 2, 3, 4),

Rk :=

[
Rk1 Rk2

Rk3 Rk2

]T
, detRk2 ̸= 0, k = 1, 2,

ς := diag(ς1, ς2, . . . , ςn) > 0, µ := diag(µ1, µ2, . . . , µn) > 0, Āf , B̄f , C̄f , D̄f , G1f , H1f ,
G2f and H2f , such that the following LMIs (29) and (30) hold, then the filtering error
system (3) is strictly exponentially passive with dissipation γ > 0. Moreover, the desired
filter is given by (2) with

Af = R−1
12 Āf , Bf = R−1

12 B̄f , Cf = R−1
22 C̄f , Df = R−1

22 D̄f . (28)
Υ11(r) 0 0 Υ14

∗ Υ22(r) 0 Υ24

∗ ∗ Υ33(r) Υ34

∗ ∗ ∗ Υ44(r)

 < 0, (29)

Q̄j(r) < Qj, P̄j(r) < Pj, (j = 2, 3), (30)

where

Υ11(r) = P̄1(r)−R1 −RT
1 , Υ22(r) = ϕ1(r)−R1 −RT

1 , Υ33(r) = Q̄1(r)−R2 −RT
2 ,

Υ14 = RT
1Ψ1 +

(
Z + Z̃

)T (
B̄fΨ2 + ĀfΨ3

)
, Υ24 = RT

1Ψ4 +
(
Z + Z̃

)T (
B̄fΨ2 + ĀfΨ3

)
,

Υ34 = RT
2Ψ5 +

(
Z + Z̃

)T (
D̄fΨ6 + C̄fΨ7

)
, Z =

[
I 0

]
, Z̃ =

[
0 I

]
,

Ψ1 =

[
AZ 0 C 0 B D 0 0 0 E1 0
0 0 0 0 0 0 0 0 0 0 0

]
,

Ψ2 =
[
A1Z 0 C1 0 0 0 0 0 0 E2 0

]
,

Ψ3 =
[
Z̃ 0 0 0 0 0 0 0 0 0 0

]
,

Ψ4 =

[
(A− I)Z 0 C 0 B D 0 0 0 E1 0

−Z̃ 0 0 0 0 0 0 0 0 0 0

]
,

Ψ5 =

[
0 FZ 0 GZ 0 0 0 0 0 0 F1

0 0 0 0 0 0 0 0 0 0 0

]
,

Ψ6 =
[
0 A2Z 0 0 0 0 0 0 0 0 F2

]
,

Ψ7 =
[
0 Z̃ 0 0 0 0 0 0 0 0 0

]
,

Υ44(r) =

 Ω̃(r) Φ̄1 Φ̄2

∗ −γI − H̄T
1f − H̄1f 0

∗ ∗ −γI − H̄T
2f − H̄2f

 ,

Φ̄1 =
[
−Ḡ1f 0 −C̄1 0 0 0 0 0 0

]T
,

Φ̄2 =
[
0 −Ḡ2f 0 0 0 0 0 0 0

]T
,

and P̄i(r), Q̄i(r), Ω̃(r), C̄1, ϕ1(r), Ḡ1f , Ḡ2f , H̄1f and H̄2f are defined as noted previously.
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4. Illustrative Example. In this section, we will test the theoretical results of this
paper by an example.

Example 4.1. Consider GRN (1) with parameters as follows:

A =

 0.3679 0 0
0 0.3679 0
0 0 0.3679

 , B =

 0 0 −0.126
−0.126 0 0

0 −0.126 0

 ,

C =

 0.1 0 0.1
0 −0.1 0.2

0.02 0 0.2

 , D =

 0.2 −0.1 0.1
0 −0.2 0.2
0 0 0.1

 , C1 =

 0.1 0.2 0.2
0.1 −0.2 0.1
0.3 0.2 0.1

 ,

F =

 0.3679 0 0
0 0.6065 0
0 0 0.3679

 , G =

 0.6321 0 0
0 0.3935 0
0 0 0.6321

 ,

E1 =

 0.3
0.5
0

 , F1 =

 0.6
0.4
0.2

 , E2 =

 0.5
0.4
0.2

 , F2 =

 0.2
0.6
0.3

 ,

E3 = 0.1, F3 = −0.1, G1 = G2 =

 0.3
0.2
0.3

 , A2 = A1 =

 0.3 0 0
0 0.2 0
0 0 0.3

 .

The regulation function is taken as g(x) = x2

1+x2 . It is easy to know that the derivative
of g(x) is less than l = 0.65, which shows L = diag(−0.325,−0.325,−0.325). Suppose
the bound of the time-delay is d1 = 1, d2 = 3, then d(k) ∈ N = {1, 2, 3}, γ = 2. The
transition probability matrix Π is given by

Π =

 0.3 0.5 0.2
0.4 0.3 0.3
0.2 0.5 0.3

 .

Take

w(k) = v(k) =

{
sin(0.3k), k ≤ 20,
0, k > 20.

Solving the matrix inequality (29) in Theorem 3.2 by the Toolbox YALMIP of MATLAB,
we can obtain the desired filter gain matrices as follows:

Af =

 0.4390 −0.1118 −0.1273
−0.0679 0.2707 0.0934
−0.4936 −0.1490 0.3374

 , Bf =

−1.3340 −0.7445 0.4208
−0.1763 −1.9257 0.2864
−0.4030 −1.2214 −0.6494

 ,

Cf =

−0.2788 −0.4372 0.0185
0.0477 0.0610 −0.0064
−0.4510 −0.7585 0.0303

 , Df =

−4.4224 −1.8862 0.0916
−0.0122 −4.4201 −0.1940
−1.6843 −3.4882 −3.1874

 ,

H1f =
[
−1.1891 −2.3000 0.7353

]
, H2f =

[
−1.3042 −3.1660 0.2639

]
,

G1f =
[
−0.4791 −0.3222 −0.2524

]
, G2f =

[
−0.3393 −0.5767 0.0151

]
.

Let the filtering error system run by random sequence d(k), and the trajectories and their
estimations of the mRNAs and proteins are shown in Figure 1, where the solid line and
dotted line describe the state trajectories and estimations of mRNAs and proteins, re-
spectively. The filtering errors are shown in Figure 2. It can be seen from Figure 2 that
the filtering error converges to zero in the absence of disturbances, which illustrates the
effectiveness of the proposed approach in this paper. In addition, for the GRN under con-
sideration, the LMIs in [18, Theorem 3.2] are not feasible, so the method proposed in this
paper may be less conservative than one in [18].
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Figure 1. Trajectories and estimations of mRNAs and proteins
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Figure 2. Estimation errors of mRNAs and proteins

5. Conclusions. This paper investigates the problem of the exponential passive filter-
ing for discrete-time GRNs with discrete and distributed delays. Firstly, an appropriate
Lyapunov functional is constructed to give a sufficient condition that the exponentially
passive filter error system is strictly exponentially passive with dissipation γ > 0. Sec-
ondly, by the available measurement data, an exponential passive filter is designed to
estimate the real concentration of mRNA and protein in GRNs. Finally, a numerical
example demonstrates the effectiveness of the proposed exponential passive filter design
method. The research method proposed in this paper can also be extended to Markov
jumping gene regulation network model and T-S fuzzy gene regulation network model.
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