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Abstract. This paper reports on the high-order moment state estimation of the Markov
jump nonlinear systems based on an unscented Kalman filter (UKF). Considering that
once the state and the external disturbances deviate from the Gaussian distribution, it
is difficult to obtain a good estimation of the actual state by only focusing on the mean
and mean square error. Therefore, a high-order moment component form of the origi-
nal systems is obtained from the state accumulation based on the cumulant generating
function, which makes it possible to fuse the high-order moment information with the
state estimation. Then, to improve the estimation accuracy, a novel high-order moment
recursive state estimator is proposed to handle the nonlinear filtering issues via a UKF.
Finally, a numerical example is provided to illustrate the effectiveness of the proposed
filter.
Keywords: Markov jump systems, High-order moment, Unscented Kalman filter, Cu-
mulant generating function

1. Introduction. As a fundamental problem in the areas of signal processing and control,
the state estimation of a dynamic system has attracted much attention during the last
several decades. Specially, considering the high-accuracy and high-quality requirements
of modern control systems, it is necessary to develop nonlinear filtering techniques to
meet the growing demand. The extended Kalman filter (EKF), which approximates the
nonlinear systems by its first-order linearization and applies a Kalman filter to it, is the
first extension of the Kalman filter to solve the nonlinear filtering issues [1]. However,
due to its limitations, including the low accuracy, poor convergence, and the difficulty
of computing the Jacobian matrix, the EKF has serious limitation for many applications
[2,3]. To overcome these disadvantages, [4] proposed an unscented Kalman filter (UKF),
which has better accuracy than the EKF and simultaneously avoids the cumbersome
calculation of the Jacobian matrix. Subsequently, the UKF has been developed rapidly
and applied widely in practical applications, such as gravity matching navigation [5],
multi-sensor fusion [6], and friction coefficient estimation [7].

However, the majority of the aforementioned nonlinear filtering results are only efficient
in single-mode systems whose dynamics depend only on the time evolution. In fact, multi-
mode nonlinear systems with interacting continuous-time and discrete-event dynamics are
more common and useful in practical processes, such as Markov jump nonlinear systems
(MJNLSs). Due to the nonlinearity of the state evolution and the randomness in the
mode jumping process, it is difficult to estimate the state of the MJNLSs. To this end,
some attempts had been made. For example, [8] proposed a consensus-based distributed
UKF design method for discrete-time MJNLSs. [9] designed an interacting multiple sensor
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UKF via considering the collaborative tracking procedure as an MJNLS. Furthermore, the
stability analysis of a discrete-time UKF for nonlinear stochastic systems with Markov
packet dropouts was addressed in [10].
Although certain progress has been obtained in the state estimation of MJNLSs, these

studies are mainly based on the assumption that the state and external disturbances of the
systems are subject to a Gaussian distribution. In this case, it is enough to estimate the
system dynamics based only on the mean or mean square error. However, in nonlinear
systems, the general Gaussian distribution (GGD) is a common phenomenon and it is
difficult to estimate the state accurately based only on the mean and mean square error
[11]. For example, unavoidable errors will result if high-order moment information is not
incorporated such as the skewness in economy systems [12]. Therefore, it is necessary to
take the high-order moment characteristics into consideration during the filter design. In
our previous work [13], the cumulant generating function (CGF) was used to analyze the
high-order moment stability of Markov jump systems and this method provides a new
approach to estimate the system state based on high-order moment characteristics.
Motivated by the aforementioned analysis, this study attempts to design a high-order

moment UKF to estimate the state of MJNLSs based on the CGF. The main contributions
of this paper are three-fold. First, the original MJNLS is transformed into a deterministic
higher order component expression based on the CGF so that the high-order moment
information can be used in the filter design. Then, the high-order moment errors are
taken into account to deal with the case of the GGD. Finally, the strong nonlinearity of
the systems has been considered in the state recursive estimation and a UKF is designed.
The rest of the paper is organized as follows. Section 2 formulates the preliminaries and

transforms the original MJNLS into a deterministic higher order component expression
based on the CGF. Section 3 presents the UKF algorithm for the transformed system.
Section 4 illustrates the proposed filtering technique using a numerical example. The
conclusions are summarized and the future research directions are pointed out in Section
5.
Notations: In is the n-dimensional unit matrix. Rn denotes the n-dimensional Euclidean

space. ∥A∥ denotes the Euclidean norm of matrix A. AT is the transposition of matrix
A. E{·} represents the statistical expectation of the stochastic process or vector. A⊗ B
is the Kronecker product of A and B. A⊗p is p times Kronecker product of the A.

2. Problem Statement and Preliminaries. Consider the following discrete-time MJ-
NLS: {

x(k + 1) = fθk (x(k)) + w(k)

y(k) = gθk (x(k)) + v(k)
(1)

where x(k) ∈ Rnx is the state vector with a known initial value, y(k) ∈ Rny is the measured
output, and w(k) ∈ Rnw and v(k) ∈ Rnv are the system noise and measurement noise.
θk represents a Markov process taking values in the finite set M = {1, 2, . . . ,m} and the
items of the transition probability matrix Π are given by:

πij = Pr (θk = j|θk−1 = i)

where πij denotes the transition probability from mode i at time k− 1 to mode j at time
k and satisfies πij > 0,

∑m
j=1 πij = 1, ∀i, j ∈ M .

According to the UKF technique of MJNLS (1) in [14], the following assumption is
given for the process noise w(k) and measurement noise v(k).

Assumption 2.1. ([14]) For all k ≥ 0, m ≥ 0,
(a) E {w(k)} = 0, E

{
w(k)wT(m)

}
= Hδ(k −m), where H > 0.

(b) E {v(k)} = 0, E
{
v(k)vT(m)

}
= Qδ(k −m), where Q > 0.

(c) E
{
w(k)vT(m)

}
= 0.
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where δ(·) is the Dirac function, which implies δ{k} =

{
1 k = 0
0 others

. With this assumption

proposed, the UKF algorithm is provided in the next section.

The difficulty in the recursive estimation of MJNLSs is the stochasticity during mode-
jumping. One of the most widely accepted ideas to handle this is weighting based on the
transition probability matrix. Motivated by this idea, we transform the MJNLS (1) into
a deterministic high-order moment component form with the same norm of the original
states based on the CGF and design a UKF for the transformed system. To establish the
recursive p-moment state estimation, first, a derandomization technique is introduced.

Firstly, the indicator function 1A is defined:

1A(ω) =

{
1 if ω ∈ A
0 otherwise

(2)

and then define:
qi(k) = E

{
∥x(k)∥1{θk=i}(θk)

}
(3)

Combining (3) and (1), we have:

qj(k + 1) =
m∑
i=1

fi (x(k))1θk=i(θk)1θk+1=j(θk+1) + w(k) =
m∑
i=1

πijfi (qi(k)) + w(k) (4)

Definition 2.1. ([13]) For a random variable z ∈ Rp with the distribution density function

p(z), the moment generating function (MGF) is defined by Φz(ϖ) =
∫
Rp e

ϖTzp(z)dz and
the CGF is defined by Ψz(ϖ) = log Φz(ϖ).

If it is analytical for the MGF Φz(ϖ) and CGF Ψz(ϖ) defined in Definition 2.1, then
it can be expanded into a Taylor’s series in the neighborhood of ϖ = 0 as:

Φz(ϖ) =
∞∑
p=0

m(p, n)T
ϖ⊗p

p!
(5)

Ψz(ϖ) =
∞∑
p=0

c(p, n)T
ϖ⊗p

p!
(6)

where m(p, n) is the p-order moment vector with dimension np×1, p = {1, 2, . . . , l} given
by:

m(p, n) =

∫
Rn

z⊗pp(z)dz (7)

c(p, n) is the p-order cumulant, which can be calculated by:

c(p, n) = m(p, n)−
p−1∑
l=1

(
p− 1
l

)
Qlc(p− l, n)⊗m(l, n) (8)

where Ql is a specific commutation matrix with an appropriate dimension.
According to (5) and (6), by taking the CGF on both sides of (4) and expanding it to

a Taylor’s series in the neighborhood of ϖ = 0, the left side of (4) is described as:

Ψqj(k+1) =
∞∑
p=0

cqj(k+1)(p, n)
Tϖ

⊗p

p!
(9)

and the right side of (4) is formulated as:

Ψ m∑
i=1

πijfi(qi(k))
=

m∑
i=1

{
∞∑
p=0

cπijfi(qi(k))(p, n)
Tϖ

⊗p

p!

}
=

∞∑
p=0

{
m∑
i=1

cπijfi(qi(k))(p, n)
Tϖ

⊗p

p!

}
(10)
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Then it yields:

cqj(k+1)(p, n) =
m∑
i=1

cπijfi(qi(k))(p, n) (11)

With the cumulant property cTz(p) = T⊗pCz(p) where T is the transformation matrix, it
is easy to find that:

cqj(k+1)(p, n) =
m∑
i=1

πijf
⊗p
i

(
cqi(k)(p, n)

)
(12)

We define sj(k, p) = cqj(k)(p, n), the state vector S(k, p) =
{
sT1 (k, p), . . . , s

T
m(k, p)

}T
,

the noise vector wmp(k) =
{
wT(k), . . . , wT(k)

}T
with an appropriate dimension, and then

(12) can be rewritten as:

S(k + 1, p) = Ftp (S(k, p)) + wmp(k) (13)

where Ftp =
(
ΠT ⊗ Inp

x

)
· diag

{
f⊗p
1 , f⊗p

2 , . . . , f⊗p
m

}
∈ R(np

x×m)×(np
x×m).

From these definitions, the MJNLS (1) is transformed into a deterministic form (13)
with the p-order moment component based on the CGF. Therefore, the recursive estima-
tion of S(k, p) is equivalent to the high-order moment state estimation of x(k) in system
(1).

Remark 2.1. When p = 1 and p = 2, the high-order moment state estimation is reduced
to the mean error estimation and the mean square error estimation, respectively, which
completely describes the Gaussian distribution parameters. When it comes to higher mo-
ment orders, the high-order dynamic characteristics of the system, such as the skewness
error and the kurtosis in the generalized Gaussian distribution, are estimated when p = 3
and p = 4, respectively.

3. Main Results. The UKF algorithm based on the high-order moment is provided in
this section. Consider the transformed nonlinear deterministic system:{

S(k + 1, p) = Ftp (S(k, p)) + wmp(k)

ytp(k) = Gtp (S(k, p)) + vmp(k)
(14)

where ytp(k) =
{
yT(k), . . . , yT(k)

}T
and vmp(k) =

{
vT(k), . . . , vT(k)

}T
with appropriate

dimensions; wmp, vmp are the uncorrelated white Gaussian noise with covariance H and
Q as described in Assumption 2.1.
Sigma points are:

S i =


Ŝi(k, p) i = 0

Ŝi(k, p) +
(√

(L+ λ)P i(k)
)
n

i = 1, . . . , L

Ŝi(k, p)−
(√

(L+ λ)P i(k)
)
n

i = L+ 1, . . . , 2L

(15)

where λ is a scaling factor;
(√

(L+ λ)P i(k)
)
n

denotes the nth row or column of√
(L+ λ)P i(k).
Then the high-order moment form of the state evolution of the sigma points is:{

Si(k + 1, p) = F (Si(k, p))

yitp(k) = Gtp (S
i(k, p))

(16)
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and the estimation values Ŝ−(k, p), ŷ−tp(k) and the output covariance P−
y (k) can be calcu-

lated as: 
Ŝ−(k, p) =

2L∑
i=0

Wm
i Si(k, p)

ŷ−tp(k) =
2L∑
i=0

Wm
i yi(k)

(17)

P−
y (k) =

2L∑
i=0

W c
i

(
yitp(k)− ŷtp(k)

) (
yitp(k)− ŷtp(k)

)T
(18)

where the weights are Wm
i = 1

2(L+λ)
and W c

i = 1
2(L+λ)

.

The implementation of the high-order moment UKF algorithm is as follows.
1) Initialization

Ŝ(0, p) = E (S(0, p))

P (0) = E

[(
S(0, p)− Ŝ(0, p)

)(
S(0, p)− Ŝ(0, p)

)T
]

where S(0, p) is the initial state with the high-order moment and P (0) is the initial
covariance between the true state and the estimated state.

2) Sigma point setting
For i = 1, . . . , 2L, set the sigma points as:

S i(k)=
{
Ŝ0(k, p), Ŝ1(k, p) +

(√
(L+ λ)P i(k)

)
, . . . , ŜL+1(k, p)−

(√
(L+ λ)P i(k)

)
, . . .

}
3) Time updating

Si(k, p) = Ftp

(
Si(k − 1, p)

)
(19)

Ŝ−(k, p) =
2L∑
i=0

Wm
i Si(k, p) (20)

P−(k) =
2L∑
i=0

W c
i

(
yitp(k)− ŷtp(k)

) (
yitp(k)− ŷtp(k)

)T
+H (21)

yitp(k) = Gtp

(
Si(k, p)

)
(22)

ŷ−tp(k) =
2L∑
i=0

Wm
i yitp(k) (23)

4) Measurement updating

P−
y (k) =

2L∑
i=0

W c
i

(
yitp(k)− ŷtp(k)

) (
yitp(k)− ŷtp(k)

)T
(24)

Pxy(k) =
2L∑
i=0

W c
i

(
Si(k, p)− Ŝ−(k, p)

)(
Si(k, p)− Ŝ−(k, p)

)T

+Q (25)

Then the UKF compensation gain is:

K(k) = Pxy(k)P
−
y (k) (26)

The estimation for the high-order moment component form of the state is given as:

Ŝ(k, p) = Ŝ−(k, p) +K(k)
(
ytp(k)− ŷ−tp(k)

)
(27)

The covariance is updated as:

P (k) = P−(k)−K(k)Py(k)K(k)T (28)
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According to the aforementioned algorithm, the optimal recursive estimation Ŝ(k, p) can
be obtained. The gain of the UKF K(k) is updated based on the variance of the system
error w(k) and the measurement error v(k). In the last step of the algorithm, the error
variance P (k) is updated and decreased; due to the fact that the additional information
is used, the compensation gain K(k) becomes more accurate than the former. In general,
the proposed method is a solution for the high-order moment state estimation of MJNLSs.
From the definitions of the CGF and S(k, p), the high-order moment component form

of the augmented state S(k, p) has the same norm as (q(k))⊗p. It is obvious that the
transformed state q(k) has the same norm as x(k) when considering (3). Consequently,
the high-order moment component form of the augmented state S(k, p) has the same
norm as (x(k))⊗p. The proposed estimation algorithm has two parameters: the original
state x(k) and the moment p. When p = 1 and p = 2, the filter is simplified to the
recursive mean and mean square state error estimation, respectively, which is similar
to the existing results of the recursive MJLS state estimation. In high-order moment
cases, more information on the state distribution is used. Under the assumption that the
state does not obey a Gaussian distribution, the high-order moment state estimation is
indispensable and shows the variation of the Gaussian distribution.

4. Simulations. In this section, we present a numerical example to verify the effective-
ness of the proposed algorithm.
Consider a two-mode MJNLS (1) as follows:

f1(x(k)) = x(k)− 12

x(k)
+ 2 log(x(k)) + sin(x(k)), f2(x(k)) = x(k) +

2

x2(k)
+ 20 cos(k).

The covariance of system noise isH = 10, the covariance of measurement noise is Q = 8,
the parameter of the UKF is L = 4, and the initial value of the system is: x0 = [−1 1]T.
Then the true trajectory and the trajectory calculated by the high-order moment UKF
for p = 1 based on the proposed algorithm are depicted in Figure 1.

Figure 1. The estimated and true value of system for the moment p = 1

Figure 1 shows that the trajectory of the estimation tracks the true values when p = 1.
Moreover, the mean value estimation (p = 1) of the state is just a special case of the
high-order moment. Consequently, the high-order moment UKF is achievable as the
performance for the moment p = 1 is effective.
To demonstrate the effect of the moment order p on the filtering performance, the root

mean square errors (RMSEs) of different moment orders are illustrated in Figure 2.
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Figure 2. The RMSEs of different moment orders for the MJNLS

Table 1. The average of the RMSEs of different moment orders for the MJNLS

Moment p RMSE
p = 1 2.0346
p = 2 2.1908
p = 3 2.5122

Figure 2 shows the RMSEs of different moments p for the MJNLS. It is evident that
the RMSEs are higher when the order of the moment p is higher. The reason is that
for a higher order moment, the RMSEs are also accumulated and the high-order moment
component form of the state estimation is imprecise. Compared with the existing results
of the state estimation, the estimation of the state in a high-order moment component
form provides additional information hidden in the GGD of the state. Consequently, the
accuracy is worse for the higher-order moment cases. The same tendency is also shown
in Table 1.

5. Conclusions. In this study, we proposed a high-order moment UKF algorithm for
MJNLSs that can be applied to solving nonlinear GGD dynamic state space problems.
Based on the CGF, a deterministic system with a high-order moment component form
transformed from the original system is obtained. In this manner, the high-order moment
information is available in the state estimation. Therefore, a UKF based on the high-
order moment is designed and takes account of the nonlinearity and high-order moment
of the GGD. Due to the accumulated error from each moment, the higher the order of
the moment is, the worse the performance of the recursive estimation is. A numerical
example is provided to illustrate the effectiveness of the proposed technique. Moreover,
the transition probability of MJNLS in this paper is completely known, the more general
situation which transition probability partly unknown will be considered in further work.
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