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Abstract. High dimensional linear regression models are widely applied in engineering,
economics, bioinformatics and other fields. Variational theory is an effective method to
solve high-dimensional sparse linear regression problems. The essence of the variational
method is to approximate the joint posterior distribution by the approximate method and
obtain the analytical solution of the posterior distribution of the parameters to be inferred,
thus greatly reducing the calculation cost of the sampling and iterative inference. How-
ever, when the problem scale is large and the number of samples is small, its inferring
performance is still not satisfactory. By using the credibility information of variables in
the iteration process, this paper proposes a method to dynamically delete the low confi-
dence variables with no zero value in the iteration process. Simulation results show that
the algorithm is simple and effective, and greatly improves the accuracy of inferences.
Keywords: Linear regression models, Variational inference, Confidence level

1. Introduction. Linear regression is an analytical method using probability model to
determine the quantitative relationship between two or more variables. It is widely used
in engineering, economics, finance, bioinformatics and so on.

The linear regression model is first fitted by least square approximation, and then some
fitting methods have been developed. However, on the whole, these fitting methods have
high computational cost when dealing with large-scale linear regression models [1,2]. The
Bayesian method can be used to infer the unknown variable (unknown weight) in the
linear regression model [3]. The method is to specify a priori to constrain the model,
and then to infer the uncertain estimation of the posterior distribution of the unknown
variable. Because the posteriori distribution requires high dimensional integration of prior
distribution and likelihood function, the computation complexity is very high. Markov
Chain Monte Carlo (MCMC) algorithm is also used to solve linear regression models.
The algorithm first generates a sample for the posterior distribution through Monte Carlo
method, and then uses the Markov chain to sample the complex posterior distribution
[4,5]. If we select the prior model carefully and set the unimportant variables to zero, we
can also reduce the computational complexity [6-8]. However, in general, linear regression
still has some problems in the application of high-dimensional sparse models, such as high
computational cost and limited inference accuracy.

The variational method can also be used for solving linear regression models. The
essence of the variational method is to simplify the computation of probability distribution
through the factorization of the high dimensional joint posterior distribution [9-13]. The
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advantage of the variational method is that it can obtain the analytical solution of the
posterior distribution of the variable parameters, thus reducing the computational cost of
iterative inference.
In practice, the variational method is accurate, if the scale of the problem is moderate

and the sampling quantity is reasonable. However, when the sample size is large and the
number of samples is small (the number of samples is far below the number of variables to
be inferred), the inferring performance is unsatisfactory. This paper proposes a method of
dynamically reducing the low confidence variable in the iterative process, and thus reduces
the scale of the model and improves the inference accuracy. The simulation results show
that the algorithm is simple and effective, and it can effectively improve the detection
rate and false detection rate of the algorithm.
This paper is arranged as follows. The second section describes the variational theory

and its algorithm. The third section proposes a modified variational method with dynamic
reduction of variables. The fourth section is simulation, and the proposed algorithm is
verified. Finally, a summary is made.

2. Linear Regression Model and Its Variational Inference Algorithm.

2.1. Linear regression model. The linear regression model can be written as

Y = Xβ+ β0 + e (1)

where Y = (y1, y2, . . . , yN)
T , yi is the ith observation or dependent variable. X is the

input matrix, and xjk is the kth input in the jth test, j = 1, 2, . . . , N , k = 1, 2, . . . ,M .
β = (β1, β2, . . . , βM)T is the weighted coefficient or the variable to be inferred. β0 is
the intercept of β. e = (e1, e2, . . . , eM)T is the random observation noise. β0 can be
eliminated in a certain way, so the linear regression model can be rewritten as follows:

Y = Xβ+ e (2)

2.2. Variational inference algorithm for linear regression model. In many ap-
plications, β = (β1, β2, . . . , βM)T is sparse, that is, most variables are 0 and non-zero
variables account for a smaller proportion. So we can assume that β is a Gauss distri-
bution, and p(β) ∼ N

(
0, 1

α
I
)
, p(α) ∼ Gamma(a0, b0), where Gamma represents gamma

distribution and a0, b0 are two hyper parameters. Assuming that all observation noises are
Independent and Identically Distributed (IID), e can be set as zero mean Gauss variables,
e ∼ N (0, σ2I).
The likelihood function of the observed variables is

p (Y|β,X) ∼
N∏
i=1

p(yi|β,Xi) (3)

where Xi is the ith row of X, then

p(yi|β,Xi) ∼ N
(
Xiβ, σ

2
)

(4)

The joint distribution of Y, β, α is

p(Y,β, α) = p(Y|β, α)p(β|α)p(α) (5)

The variational technique is to find an approximate distribution for the posterior dis-
tribution of the target, which is more convenient in the inference process. This processing
usually refers to a factorization of the analytical expression of the posterior distribution.
According to the theory of factorization [14], we have

p(β, α|X,Y) ≈ q(β, α) = q(β|α)q(α) (6)
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The posteriori distribution of α is calculated first. According to variational approxi-
mation theory, ln q(α) is a logarithmic joint distribution. Consider the expectation of all
variables in β,

ln q(α) = Eβ[ln p(Y,β, α)] + const.

= (a0 +M/2− 1) lnα− α

(
b0 +

1

2
E∥β∥2

)
+ const.

(7)

where q(α) is a gamma distribution, q(α) ∼ Gamma(an, bn), and the parameters are
calculated as follows: {

an = a0 +M/2

bn = b0 +
1

2
E∥β∥2 (8)

where E∥β∥2 = ∥µn∥2+tr(Sn), µn and Sn are the mean vector and variance matrix of the
posteriori distribution of β. The calculation of these two values will be discussed later.

Using the variational theory again, we calculate the expectation of the joint distribution
of p(Y,β, α)

ln q(β) = Eα[ln p(Y,β, α)] + const.

= −1

2

(
1

σ2
XTX+ E(α)I

)
ββT − 1

2σ2

∑
i

(−2Xiyi)
Tβ+ const.

(9)

We can find that q(β) is a Gaussian distribution, q(β) ∼ N(µn,Sn), and
Sn =

(
1

σ2
XTX+

an
bn

I

)−1

µn =
1

σ2
SnX

TY

(10)

The forms of (9) and (10) constitute a complete iterative process. After a sufficient
number of iterations, the iteration will arrive at a steady state. In practice, a relatively
simple method can be used to judge whether the iteration process is stable, whether the
steady state is achieved, and whether we can stop the iteration. We can calculate the
difference of parameters in two successive iterations, for example, Sn = ∥µn − µn−1∥2.
If Sn is diminishing, the algorithm is stable. When Sn is small enough (depending on
requirements), the iteration can be stopped.

3. Variational Inference Algorithm Based on Dynamic Reduced Variable Set.
When the number of variables in β is far more than the number of samples in Y, that is,
M is far greater than N , and the number of non-zero elements in β is relatively small,
the inferential performance of the variational method is poor.

The reason is that the variational inference cannot infer most of the zero value “vari-
ables” to 0 by recursion, and these variables have been iterated around 0, so the parameter
inference speed is slow and the inference precision is poor. For these parameters that are
in the vicinity of 0, we can set these parameters to zero and delete them from the model
to simplify the model dimension and reduce the computational complexity, thus speeding
up the calculation and improving the calculation precision.

The idea is that we judge the parameters after the end of an iteration, and if the value
of a variable is small enough, it can be judged to be a zero-value variable, and it can be
removed from the model. The model after deleting continues to follow the next iteration.

We set a vector Tk in the kth iteration. If βki is zero, and will be deleted from model,
then we set tki = 0; otherwise tki = 1. Let Ck =

∑
tki. βk is a Ck × 1 vector from βk−1

by deleting some zero-value variable. Xk is obtained by deleting the column in Xk−1 with
tki = 0, and thus Xk is an N × Ck matrix, and is a subset of Xp, 1 ≤ p < k.
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By model reduction, now the model Y = Xkβk + e, Xk is an N × Ck matrix, βk is
Ck × 1 vector.
Now the algorithm is summarized as follows:

Input matrix X, input the observation vector Y; set the initial super parameter a0 = 1,
b0 = 1. Set a smaller number to ξ and ψ.
Flag = 1;
While Flag (outside loop)

Repeat (inner loop):
1) calculate Sn and µnby (10);
2) calculate an and bnby (8);
3) calculate S = ∥µn − µn−1∥2;

until S < ξ;
If |µni| < ψ, then set tni = 0; otherwise tni = 1, calculate Cn.
Then, according to the method described above, get Xn, βn from Xn−1,βn−1.
If Cn = Cn−1, Flag = 0;

End While
Output µnas the inferred result of β.

The iteration consists of an inner loop and an outside loop. In the inner loop, the
standard variation inference method is used to infer the parameters, and the mean square
error is calculated. If the mean square error is lower than the threshold, the inner loop
ends. In the outer loop, some variables are deleted from the model according to the
method described above, thus reducing the dimension of the model. In the outer loop,
the dimensions of the two adjacent models are compared. If the dimensions of the two
models are the same, that means the model cannot shrink again, then output the results.
The whole iteration stops.

4. Simulations. In order to verify the performance of the proposed algorithm, we con-
ducted several simulations. The input parameters used in the linear regression model
are randomly generated and the variables are randomly generated, but we control the
non-zero value ratio less than 10% to embody the sparsity. In the simulation, we compare
two sets of models, and compare the standard Variation technique for Linear Regression
model (VLR) and our proposed reliability based variational method (VLR-RB).
Suppose that there are T non-zero variables in the original model, and T ′ is the number

of non-zero variables deduced from an algorithm, which includes TT , the number of non-
zero variables in the original model, and TF , the number of variables inferred as a non-zero
variable, but being zero variable in the original model. T ′ = TF + TT .
We define two parameters to characterize the performance of the algorithm. One is

Power of Detection (PD) to signify the ability of finding correct non-zero variable, PD =
TT/T , and one is False Detection Rate (FDR) to indicate the error ratio caused by false
inference of the algorithm, defined as FDR = TF/T

′. If the infer result is completely
correct, TF = 0, T ′ = TT , PD = 1, FDR = 0. Figure 1 is a simulation case where the
parameter size is 1200, of which 120 are non-zero variables. The number of simulated
observations is 200 : 20 : 500, that is, the observed value is 200, 220, . . . , 500. Gauss white
noise is added, and the signal to noise ratio is 10.
It can be seen that the proposed algorithm VLR-RB is superior to VLR in terms of

detection rate, and PD is close to 100% when the number of observations is above 250,
while the VLR algorithm needs more than 350 observations to reach 90%. In terms of
FDR, the VLR-RB performance is also excellent. When the number of observations is
over 250, the false detection rate is close to 0, while the FDR of VLR has been maintained
at around 50%.
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Figure 1. The number of parameters to be determined is 1200, SNR is
10, the left side is the detection rate, and the right side is the false detection
rate.

Figure 2. The number of parameters to be determined is 2000, SNR is
10, the left side is the detection rate, and the right side is the false detection
rate.

Figure 2 is a simulation case where the parameter size is 2000, of which 200 are non-zero
variables. The number of simulated observations is 200 : 50 : 1000. The signal to noise
ratio is 10. It can be seen that VLR-RB performance is still superior to VLR in terms of
false detection rate. In terms of detection rate, the VLR-RB performance is better than
VLR in the range of 450 ∼ 800.

5. Conclusion. The variational method can give the analytical solution directly due to
its approximate factorization of the posterior distribution, thus avoiding the sampling
process of the posterior distribution, and greatly simplifying the inferring cost. Based on
the reliability of non-zero variables, this paper proposes a method of dynamic reduction
of non-zero variables, thus improving the performance of the algorithm, especially in
the false detection rate, and its performance is far superior to the original variational
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inference algorithm. The simulation results also show the reliability of the algorithm.
Some measures can be used to further improve the accuracy of inference and reduce
the calculation time, such as the adoption of dynamic reduction strategy, and improved
iterative end judgment.
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