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Abstract. A new method for solving the bending vibration equation of viscoelastic can-
tilever beam with variable cross section is presented in this paper. The fractional order
governing equation is established based on the constitutive relation of viscoelastic materi-
al, the theory of variable cross-section beam and the motion equation of beam. Numerical
results for viscoelastic beams with two different cross sections are given, and the validity
of the algorithm is verified. The displacements of variable cross-section beams composed
of two kinds of viscoelastic materials under different uniform loads, different harmonic
loads and different taper ratios of cross-sections are compared. Therefore, the bending
vibration of viscoelastic cantilever beam with variable cross-section is analyzed theoreti-
cally.
Keywords: Constitutive relation of fractional viscoelastic material, Viscoelastic can-
tilever beam, Variable cross-section beam, Bernstein polynomial, Operator matrix, Nu-
merical solution

1. Introduction. The beam whose section changes along the axis is called variable cross-
section beam. This kind of beam has great applications in material mechanics [1], mechan-
ical engineering [2] and civil engineering [3]. With the research of advanced viscoelastic
materials in recent years, its application value is getting higher and higher.

In many papers, straight beams with a rectangular [4] or circular [5] cross-section are
usually selected as the research content. In recent years, the establishment of models
for variable cross-section beams [6, 7] and numerical solution algorithms [8] have become
more and more mature.

With the rapid development of fractional order, most of the constitutive equations of
viscoelastic materials adopt fractional order equation [9, 10]. Combined with the the-
oretical knowledge of beams and the constitutive relation of viscoelastic materials, the
fractional order governing equations of various beams are derived. Numerical simulations
are carried out in time domain by various numerical methods. The main analysis methods
include variational iteration method [11], multi-scale method [12], finite element method
[13] and so on.
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In the field of numerical computation, the polynomial algorithm for numerical solution
of fractional equations is relatively mature. Legendre polynomials [14], Chebyshev poly-
nomials [15], Bernoulli wavelets [16] and Bernstein polynomials [17] are often used as the
basis functions for numerical simulation.
This article will numerically analyze the bending vibration of a viscoelastic variable

section cantilever beam. By using the fractional constitutive equation of viscoelastic
material and the Hamiltonian principle, the bending vibration equation of the variable
cross-section cantilever beam is established. Using the Bernstein polynomial to solve
the problem, through the study of numerical results, find the material, section, and the
impact of the load on the displacement. The results show that the larger the uniform
load is, the larger the displacement is; the larger the frequency of harmonic load is, the
larger the displacement is; the larger the taper ratio of variable cross-section beam is,
the larger the displacement is. When the same beam composed of polybutadiene and
butadiene B252 receives the same load, the displacement of butyl B252 is smaller than
that of polybutadiene, and the corresponding damping is larger.
This paper is organized as follows. In Section 2 we introduce the definition of fractional

order, the viscoelastic constitutive relation and the concepts of Bernstein polynomials. In
Section 3 the fractional bending vibration equation of a variable cross-section cantilever
beam is derived. In Section 4 the algorithm for solving equations by using Bernstein
polynomials is given. In Section 5 several numerical examples of beams with variable
cross-section are given. Finally, Section 6 concludes the paper.

2. Preliminary Knowledge. The fractional differential theory, viscoelastic constitutive
equation and Bernstein polynomials are introduced below, which provides a theoretical
basis for this study.

2.1. Basic knowledge of fractional calculus. In order to better study the performance
of materials, scholars use fractional calculus to establish constitutive equation. At present,
the definition of fractional calculus is not unified, and we mainly introduce the definition
of Caputo fractional calculus.

Definition 2.1. Fractional Caputo differential definition

C
a D

α
t f(t) =


dmf(t)

dtm
, α = m ∈ N+

1

Γ(m− α)

∫ t

a

f (m)(T )

(t− T )α−m+1dT, 0 ≤ m− 1 < α < m
(1)

where m is the smallest positive integer greater than α.
For Caputos derivative we have

C
a D

α
t C = 0 (2)

where C is a constant.

C
a D

α
t x

m =

 0, m = 0
Γ(m+ 1)

Γ(m+ 1− α)
xm−α, m = 1, 2, . . .

(3)

where 0 < α ≤ 1.

2.2. Fractional viscoelastic constitutive equation. For viscoelastic analysis, me-
chanical model can be used to study. Most mechanical models are composed of a combi-
nation of spring and sticky pot. Viscoelasticity is a material that is a polymer between an
ideal elasticity and an ideal viscous material with a stress-strain between the two. This
paper adopts Kelvin-Voigt model of the form

σ(x, t) = E0ε(x, t) + E1
dαε(x, t)

dtα
(4)
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2.3. The definition of Bernstein polynomials basis. Bernstein polynomials of degree
are defined by

Bi,n(x) =

(
n
i

)
xi(1− x)n−i (i = 1, 2, . . . , n) (5)

By using the binomial expansion of (1− x)n−i, Equation (5) can be expressed as

Bi,n(x) =

(
n
i

)
xi(1− x)n−i =

n−i∑
k=0

(
n
i

)(
n− i
k

)
xi+k (6)

Now, we define

Φ(x) = [B0,n(x), B1,n(x), . . . , Bn,n(x)]
T (7)

Equation (7) is expressed in the form of a matrix

Φ(x) = ATn(x) (8)

where

A =



(−1)0
(

n
0

)
(−1)1

(
n
0

)(
n− 0
1

)
· · · (−1)1

(
n
0

)(
n− 0
n− 0

)
0 (−1)0

(
n
1

)(
n− 1
0

)
· · · (−1)n−1

(
n
1

)(
n− 1
n− 1

)
...

...
. . .

...

0 0 · · · (−1)0
(

n
n

)



Tn(x) =


1
x
...
xn


A is called the coefficient matrix of Bernstein polynomial. Because the coefficient matrix

is reversible, we can get

Tn(x) = A−1Φ(x) (9)

3. The Establishment of Bending Vibration Equation. As shown in Figure 1, x
is the geometric axis, y is the vertical axis, and z is the horizontal direction. The cross
section is circular or rectangular type, and the sectional area decreases along the x-axis
direction. The length of the beam is l. The beam deflection is u(x, t), the beam length is
ρ, the cross-sectional area is A(x), the transverse load is f(x, t), and the bending moment
is M(x, t).

The dynamic equations of beams with variable cross-section are as follows.

ρA(x)
∂2u(x, t)

∂t2
+

∂2M(x, t)

∂x2
= f(x, t) (10)

Figure 1. Variable section cantilever beam diagram
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This paper adopts Kelvin-Voigt model of the form

σ(x, t) = E0ε(x, t) + E1D
α
t ε(x, t) (11)

where ε(x, t) is the axial strain. σ(x, t) is the normal cross-section stress. E0, E1, α
are the parameters of the viscoelastic material. For viscoelastic materials, we selected
polybutadiene and butyl B252. The material is polybutadiene, parameter α = 0.528,
E0 = 8.14 × 105 MPa, E1 = 7.31 × 104 MPa. The material is butyl B252, the order
is α = 0.519, E0 = 1.05 × 106 MPa, E1 = 2.44 × 105 MPa [18]. Dα

t uses Caputo type
fractional differential definition.
The relationship between bending moment and stress is written as

M(x, t) = −
∫
A

zσ(x, t)dz (12)

For small deformations, the strain-displacement relationship is given by

ε(x, t) = z
∂2u(x, t)

∂x2
(13)

According to Equation (13), the beam bending moment is equal to

M(x, t) = E0I(x)
∂2u(x, t)

∂x2
+ E1I(x)D

α
t

∂2u(x, t)

∂x2
(14)

where I(x) is the moment of inertia of the section given by
∫
A(x)

z2dA(x).

Thus, after the substitution of Equation (14) in Equation (10), the bending vibration
equation of viscoelastic beam with variable cross-section is obtained

ρA(x)
∂2u(x, t)

∂t2
+

∂2

∂x2

(
E0I(x)

∂2u(x, t)

∂x2
+ E1I(x)D

α
t

∂2u(x, t)

∂x2

)
= f(x, t) (15)

A beam with a variable cross-section is a cantilever beam, and the boundary condition
and initial condition are

u(0, t) =
∂u(0, t)

∂x
= 0

∂2u(l, t)

∂x2
=

∂3u(l, t)

∂x3
= 0

u(x, 0) =
∂u(x, 0)

∂t
= 0

4. Numerical Method of Bernstein Polynomial.

4.1. Function approximation. We can approximate function u(x, t) ∈ L2([0, 1]× [0, 1])
by an expansion of the form

u(x, t) ∼=
n∑

i=0

n∑
j=0

ui,jBi,n(x)Bj,n(t) = ΦT (x)UΦ(t) (16)

where U is the coefficient matrix to be solved

U =


u00 u01 · · · u0n

u10 u11 · · · u1n
...

...
. . .

...
un0 un1 · · · unn

 (17)

The U can be calculated by the following formula

U = Q−1(Φ(x), (Φ(t), u(x, t)))Q−1 (18)
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4.2. Numerical algorithm. The first derivative of Φ(x) can be obtained

Φ′(x) = DΦ(x) (19)

where D is an order matrix, which is called the first order differential operator matrix of
the Bernstein polynomial.

Now deriving Equation (8), we can get

Φ′(x) = A


0
1
...

nxn−1

 (20)

Define the (n+ 1)× n matrix V(n+1)×n and vector T ∗
n(x) as

V(n+1)×n =


0 0 0 0
1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · n

 , T ∗
n(x) =


1
x
...

xn−1

 (21)

T ∗
n(x) is expanded in the form of Φ(x), and we can get

T ∗
n(x) = B∗Φ(x) (22)

where

B∗ =
[
A−1

[1] A−1
[2] · · · A−1

[n]

]T
A−1

[k] is kth row of A−1, k = 1, 2, . . . , n, and we have

Φ′(x) = AV(n+1)×nB
∗Φ(x) (23)

Converting ∂u(x,t)
∂t

into a matrix form, we obtain

∂u(x, t)

∂t
∼=

d
(
ΦT (x)UΦ(t)

)
dx

= ΦT (x)U
d(Φ(t))

dx
= ΦT (x)UDΦ(x) (24)

where
D = AV(n+1)×nB

∗ (25)

By deducing Equation (8) again, we can get

Φ′′(t) = D2Φ(t) (26)

then

∂2u(x, t)

∂t2
∼=

∂2
(
ΦT (x)UΦ(t)

)
∂t2

= ΦT (x)(D)2UΦ(t) = ΦT (x)
(
AV(n+1)×nB

∗)2UΦ(t) (27)

Similarly,

∂2

∂x2

(
E0I(x)

∂2u(x, t)

∂x2

)
∼=

∂2

∂x2

(
E0I(x)

∂2(ΦT (x)UΦ(t))

∂x2

)
=

∂2

∂x2

(
E0I(x)Φ

T (x)
(
DT

)2
Φ(t)

)
= E0

(
I ′′(x)ΦT (x)

(
DT

)2
UΦ(t) + 2I ′(x)ΦT (x)

(
DT

)3
UΦ(t)

+ I(x)ΦT (x)
(
DT

)4
UΦ(t)

)
= E0

(
I ′′(x)ΦT (x)

((
AV(n+1)×nB

∗)T)2

UΦ(t)

+ 2I ′(x)ΦT (x)
((

AV(n+1)×nB
∗)T)3

UΦ(t)
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+ I(x)ΦT (x)
((

AV(n+1)×nB
∗)T)4

UΦ(t)

)
(28)

Now Dα
t u(x, t) is expressed as a matrix; combined with Equation (8), we have

Dα
t u(x, t)

∼= Dα
t Φ

T (x)UΦ(t)

= ΦT (x)UDα
t Φ(t)

= ΦT (x)UADα
t Tn(t)

= ΦT (x)UADα
t


1
t
...
tn



= ΦT (x)UA


0 0 · · · 0

0 Γ(2)
Γ(2−α)

t−α · · · 0
...

...
. . .

...

0 0 · · · Γ(n+1)
Γ(n+1−α)

t−α




1
t
...
tn


= ΦT (x)UAMA−1Φ(t) (29)

where

M =


0 0 · · · 0

0 Γ(2)
Γ(2−α)

t−α · · · 0
...

...
. . .

...

0 0 · · · Γ(n+1)
Γ(n+1−α)

t−α


Then

∂2

∂x2

(
E1I(x)D

α
t

∂2u(x, t)

∂x2

)
∼= E1

(
I ′′(x)ΦT (x)

((
AV(n+1)×nB

∗)T)2

UAMA−1Φ(t)

+ 2I ′(x)ΦT (x)
((

AV(n+1)×nB
∗)T)3

UAMA−1Φ(t)

+ I(x)ΦT (x)
((

AV(n+1)×nB
∗)T)4

UAMA−1Φ(t)

)
(30)

Finally, insert Equation (27), Equation (28) and Equation (30) into Equation (15). We
have

ρA(x)ΦT (x)
(
AV(n+1)×nB

∗)2Φ(t) + E0

(
I ′′(x)ΦT (x)

((
AV(n+1)×nB

∗)T)2

UΦ(t)

+ 2I ′(x)ΦT (x)
((

AV(n+1)×nB
∗)T)3

UΦ(t) + I(x)ΦT (x)
((

AV(n+1)×nB
∗)T)4

UΦ(t)

)
+E1

(
I ′′(x)ΦT (x)

((
AV(n+1)×nB

∗)T)2

UAMA−1Φ(t) + 2I ′(x)ΦT (x)
((

AV(n+1)×nB
∗)T)3

UAMA−1Φ(t) + I(x)ΦT (x)
((

AV(n+1)×nB
∗)T)4

UAMA−1Φ(t)

)
= f(x, t) (31)

Using the collocation method, the discrete variable (x, t) is (xi, ti), and Equation (31) is
transformed into a linear system of equations. By using Matlab and least square method,
the solution coefficient ui,j, (i = 0, 1, . . . , n; j = 0, 1, . . . , n) can be obtained, and thus the
numerical solution of the original problem can be obtained.
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5. Numerical Examples. The solid line in the graph below indicates that the material
used is polybutadiene, and the dashed line indicates that the material used is butyl B252.

For cantilever beam parameters l = 1 m, A0 = 10 cm2, I0 = 20.833 cm4, ρ = 8000
kg/m3, in this paper, two kinds of variable section viscoelastic beams are studied. The
first type is a circular section beam with parameters of

A(x) = A0(1− cx/l)2, I(x) = I0(1− cx/l)4

where 0 ≤ c < 1 is the taper ratio of the variable section beam.
The second type is a rectangular beam with parameters of

A(x) = A0(1− cx/l), I(x) = I0(1− cx/l)3

5.1. Round cross-section beam. When the cantilever beams are subjected to loads
of 10Heaviside(t), 30Heaviside(t) and 50Heaviside(t), the solution of displacement when
c = 0.5, t = 0.5455 can be obtained as Figure 2(a). When the cantilever beams are
subjected to loads of sin

(
π
2
t
)
, sin(πt) and sin

(
3π
2
t
)
, the solution of displacement when

c = 0.5, t = 0.5455 can be obtained as Figure 2(b). When the load is 10Heaviside(t),
t = 0.5455, the taper ratio is 0.25, 0.5, and 0.75 when the displacement solution is as
Figure 2(c).

5.2. Rectangular cross-section beam. When the cantilever beams are subjected to
loads of 10Heaviside(t), 30Heaviside(t) and 50Heaviside(t), the solution of displacement
when c = 0.5, t = 0.5455 can be obtained as Figure 3(a). When the cantilever beams are
subjected to loads of sin

(
π
2
t
)
, sin(πt) and sin

(
3π
2
t
)
, the solution of displacement when
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Figure 2. Displacement solutions of round cross-section beam



554 Y. FENG, L. LIU AND Y. CHEN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

u(
x)

c=0.5,t=0.5455

 

 

f(x,t)=10Heaviside(t)
f(x,t)=30Heaviside(t)
f(x,t)=50Heaviside(t)

(a) Uniform loads

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

x

u(
x)

c=0.5,t=0.5455

 

 

f(x,t)=sin(πt/2)

f(x,t)=sin(πt)

f(x,t)=sin(3πt/2)

(b) Harmonic loads

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u(
x)

f(x,t)=10Heaviside(t),t=0.5455

 

 

c=0.25
c=0.5
c=0.75

(c) Taper ratios

Figure 3. Displacement solutions of rectangular cross-section beam

c = 0.5, t = 0.5455 can be obtained as Figure 3(b). When the load is 10Heaviside(t),
t = 0.5455, the taper ratio is 0.25, 0.5, and 0.75 when the displacement solution is as
Figure 3(c).
It can be seen from Figure 2 that the displacement of viscoelastic cantilever beam

increases with the increase of uniform load. It can be seen from Figure 3 that the dis-
placement of the viscoelastic cantilever beam increases with the increase of the harmonic
load frequency. It can be seen from Figure 3 that the displacement of viscoelastic can-
tilever beams increases with increasing taper ratio of variable cross-section. From Figure
2 and Figure 3, it can be seen that the beam formed by polybutadiene material beam is
larger than that of butyl B252, and the corresponding damping is relatively small.

6. Conclusion. The fractional order governing equations are established according to
the constitutive relations of viscoelastic materials, the theory of variable cross-section
beams and the equations of motion of beams. In this paper, a new numerical algorithm
for solving the fractional order equation of bending vibration of a variable cross-section
cantilever beam is established in the time domain. The numerical examples of two kinds of
variable cross-section beams are given, and the displacement solutions of beams composed
of two viscoelastic materials under different loads are given, which verifies the effectiveness
of the algorithm.
The effects of uniform load, harmonic load, variable cross section taper ratio and vis-

coelastic material on displacement are analyzed. Through image observation, it can be
found that with the increase of uniform load, the displacement of beams increases. As
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the frequency of harmonic load increases, the displacement of beams increases. With the
increase of the taper ratio of the beam with variable cross-section, the displacement of
the beam becomes larger. The displacement of a variable cross section beam composed of
polybutadiene and butadiene B252 is compared. When the same load and the same cross
section, the displacement of butyl B252 is less than the displacement of polybutadiene,
and the corresponding damping is also larger.

In this paper, only the displacement of cantilever beam is considered. In future work,
rotation angle is also taken into account. Then the fractional order equations are con-
structed. By solving the equation numerically, the properties of the material can be
analyzed.

Acknowledgements. This work is supported by the Natural Science Foundation of
Hebei Province (A2017203100) in China and the LE STUDIUM RESEARCH PROFES-
SORSHIP award of Centre-Val de Loire region in France.

REFERENCES

[1] M. G. Gnay and T. Timarci, Static analysis of thin-walled laminated composite closed-section beams
with variable stiffness, Composite Structures, vol.182, 2017.

[2] M. A. Carruth and J. M. Allwood, The development of a hot rolling process for variable cross-section
I-beams, Journal of Materials Processing Technology, vol.212, no.8, pp.1640-1653, 2012.

[3] S. J. E. Dias and J. A. O. Barros, NSM shear strengthening technique with CFRP laminates applied
in high T cross section RC beams, Composites Part B: Engineering, vol.114, pp.256-267, 2017.

[4] I. S. Choi, G. W. Jang, S. Choi et al., Higher order analysis of thin-walled beams with axially varying
quadrilateral cross sections, Computers & Structures, vol.179, pp.127-139, 2017.

[5] S. M. Abdelghany, K. M. Ewis, A. A. Mahmoud et al., Vibration of a circular beam with variable
cross sections using differential transformation method, Beni-Suef University Journal of Basic and
Applied Sciences, vol.4, no.3, pp.185-191, 2015.

[6] A. J. Hull, D. Perez and D. L. Cox, An analytical model of a curved beam with a T shaped cross
section, Journal of Sound Vibration, vol.416, pp.29-54, 2018.

[7] R. Friedrich, R. Lammering and M. Rösner, On the modeling of flexure hinge mechanisms with finite
beam elements of variable cross section, Precision Engineering, vol.38, no.4, pp.915-920, 2014.

[8] V. S. Zhernakov, V. P. Pavlov and V. M. Kudoyarova, Spline-method for numerical calculation
of natural-vibration frequency of beam with variable cross-section, Procedia Engineering, vol.206,
pp.710-715, 2017.

[9] M. D. Paola, R. Heuer and A. Pirrotta, Fractional visco-elastic Euler-Bernoulli beam, International
Journal of Solids & Structures, vol.50, nos.22-23, pp.3505-3510, 2013.

[10] S. M. S. Bahraini, M. Farid and E. Ghavanloo, Large deflection of viscoelastic beams using fractional
derivative model, Journal of Mechanical Science & Technology, vol.27, no.4, pp.1063-1170, 2013.

[11] O. Martin, A modified variational iteration method for the analysis of viscoelastic beams, Applied
Mathematical Modelling, vol.40, nos.17-18, pp.7988-7995, 2016.

[12] X. Q. He, M. Rafiee, S. Mareishi et al., Large amplitude vibration of fractionally damped viscoelas-
tic CNTs/fiber/polymer multiscale composite beams, Composite Structures, vol.131, pp.1111-1123,
2015.

[13] C. Chazal and R. M. Pitti, Integral approach for time dependent materials using finite element
method, Journal of Theoretical & Applied Mechanics, vol.4, no.4, pp.1029-1048, 2011.

[14] Z. Meng, M. Yi, J. Huang et al., Numerical solutions of nonlinear fractional differential equations by
alternative Legendre polynomials, Applied Mathematics & Computation, vol.336, pp.454-464, 2018.

[15] J. Xie, Z. Yao, H. Gui et al., A two-dimensional Chebyshev wavelets approach for solving the Fokker-
Planck equations of time and space fractional derivatives type with variable coefficients, Applied
Mathematics & Computation, vol.332, pp.197-208, 2018.

[16] J. Wang, T. Z. Xu, Y. Q. Wei et al., Numerical solutions for systems of fractional order differential
equations with Bernoulli wavelets, International Journal of Computer Mathematics, pp.1-21, 2018.

[17] Y. Chen, L. Liu, B. Li et al., Numerical solution for the variable order linear cable equation with
Bernstein polynomials, Applied Mathematics & Computation, vol.238, no.7, pp.329-341, 2014.

[18] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to
viscoelasticity, Journal of Rheology, vol.27, no.3, 1983.


