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Abstract. Identification of an unstable process has to be performed in closed-loop man-
ner. When the sensitivity of the closed-loop is very low, while the external test signal is
restricted to a small range, the numerical computation of the closed-loop identification
suffers from severe numerical problems in model structure identification and parameter
estimation. In this paper the cyclo-stationarity is applied to dealing with the poor nu-
merical conditions. The model structure is determined by both the mean squared error
and the cyclo-stationarity detection, and the parameter estimation is performed through
optimization of the criteria in both the time and subspace domains. The effectiveness is
illustrated through the simulation example and the identification experiment.
Keywords: System identification, Output over-sampling, Cyclo-stationarity, Model
structure selection

1. Introduction. In many practical applications to deal with an unstable process, a
mathematical model is expected to be identified from the experimental data collected in
the closed-loop manner, where the unstable process is stabilized by a feedback controller.
When little priori information is available for performing identification, sometimes not
only the estimation of model parameters, but identification of model structure is required
to be performed under the environment with unknown noise terms. If the experimental
data are informative, the model structure is conventionally determined by using some
information criteria such as the final prediction-error (FPE), Akaike information criterion
(AIC), or the minimum description length (MDL), and then the model parameters are
estimated through optimizing a specified criterion by some algorithms in time domain, or
the spatial methods using the subspace properties [1].

The informativeness is a fundamental condition in system identification, where the pro-
cess input and output signals must have sufficient frequency excitations, and their power
is expected to suppress the affection of noise or disturbance. Nevertheless, in order to
stabilize the unstable process, the feedback controller usually makes the sensitivity to the
external signals be low in some frequency bands. Moreover, the closed-loop performance
sometimes requires that the unstable process works around the stationary points, so the
external test signals cannot be arbitrarily added into the closed-loop. As a result, the
experimental data collected from closed-loop may have less frequency components in some
frequency bands, and suffer severe ill-conditioned numerical problem. Another difficulty
is the correlation of experimental data with the noise terms. Since the input signal added
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to the process is generated by the feedback controller, both the input and output signals
are correlated with the noise in closed-loop, i.e., the parameter estimation is an error-
in-variables problem [2], which may cause large estimation bias unless the correlation of
both the input and output signals with the noise terms is removed or compensated. Ac-
cordingly, the conventional methods are performed under very poor numerical conditions,
and affected by the noise easily; thus, the identification performance of unstable process
characteristics in the conventional methods degrades largely.
On the other hand, the output over-sampling based identification approach has been

demonstrated to improve the performance of closed-loop identification where the input
signal is held by a zero-order holder, while the output signal is sampled several times
with the holding period of the input signal [3]. Consequently, the input and output
signals have cyclo-stationarity compared with the signals in the conventional methods.
It has been illustrated that the characteristics of cyclo-stationarity can be applied to
detecting the model information of the over-sampled stable or unstable processes under
poor numerical conditions, and to decreasing the affection of the noise term [4, 5], but
the approach to determining the model structure has not been explicit yet. In this paper,
an efficient cyclo-stationarity detection approach is presented, then, a novel information
criterion is developed to determine the model structure by applying cyclo-stationarity and
mean square of prediction error, and thus the model structure can be determined more
appropriately than the conventional methods. Moreover, the cyclo-stationary information
is introduced into the identification algorithm to mitigate the severe numerical problem,
so the proposed algorithm has high identification performance for the unstable process in
closed-loop experiment conditions.
The rest of the paper is organized as follows. In the next section, the main identifica-

tion problems of the unstable process in closed-loop are summarized. In Section 3, the
cyclo-stationary characteristics of the process input and output signals are analyzed, and
the estimation algorithm for the cyclo-stationarity is presented. Then the identification
algorithm for model structure determination and parameter estimation is illustrated in
Section 4, and some simulation examples and the identification experiment of a magnetic
levitation system are shown in Section 5. Finally, the conclusion and the future research
work are given in Section 6.
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Figure 1. Illustration of output over-sampling in closed-loop identification

2. Problem Statement. The diagram of the unstable process in closed-loop considered
in this paper is illustrated in Figure 1. The continuous time unstable process Gc(s) with
unstable poles is regulated by a digital controller F (z−1), where z−1 is a backward shift
operator. The control input u(m) is added to the process through a zero-order holder
with holding period T , i.e., the control input is a piece-wise signal with rate 1/T , and
correspondingly the process model can be described by a discrete-time model with respect
to the interval T . Assume that the process output yc(t) is disturbed by a stochastic noise
ec(t), and then the input-output description of the process can be given by

y(m) = G
(
z−1
)
u(m) + e(m), (1)

where y(m) and e(m) are the samples of output yc(t) and the noise term ec(t) at instant



ICIC EXPRESS LETTERS, VOL.13, NO.7, 2019 627

mT , respectively. G
(
z−1
)
is the discrete-time transfer function of Gc(s), and the backward

shift operator z−1 corresponds to the interval T .
If the reference signal r(m) is informative, the conventional indirect closed-loop iden-

tification algorithms construct two models first, one is r(m) ∼ u(m) model, the other
one is r(m) ∼ y(m) model, and then the process model G

(
z−1
)
is extracted from these

two models [6]. When the informativeness of r(m) is not available for identification, the
direct method is the possible choice to identify the process model using the data of u(m)
and y(m), and thus it requires that u(m) and y(m) can sufficiently offer independent
excitations to guarantee the informativeness of experimental data. It might be achieved
by using high order controller or switching between different control laws to reduce the
linear dependence of u(m) and y(m) in the conventional direct methods. Nevertheless, the
simple controller such as proportional-integral-differential (PID) controller is widely used
in many process control systems, whereas the switching control laws may yield fluctuation
in the process output. An alternative approach to guaranteeing the informativeness is the
output over-sampling scheme, which is illustrated in Figure 1. The controller remains the
same as that in the usual operation, while the output yc(t) is sampled at the rate P/T ,
which is faster than the rate of input signal 1/T . Here P is an integer indicating the
over-sampling rate. Let the output sampling interval be indicated as ∆ = T/P , then the
over-sampled output is y∆(k), whereas only the output signals at the instantsmT = mP∆
are fed back into the controller. For the simplicity of notation, the process input at instants
k∆ is denoted as u∆(k), and u∆(mP ) = u∆(mP + 1) = · · · = u∆((m+ 1)P − 1) = u(m).
The output over-sampling is easily implemented in the digital control systems [7].

It is demonstrated that both u∆(k) and y∆(k) have cyclo-stationarity with respect to
the interval ∆, which is quite different from the stationary properties in the conventional
methods. The cyclo-stationarity can provide independent information for closed-loop
identification, which will be shown in the next section.

3. Cyclo-Stationarity Property Analysis and Estimation. Assume that r(m) is
pseudo stationary stochastic signal, e∆(k) and e(m) are stationary signals, and then u∆(k)
and y∆(k) are cyclo-stationary signals whose correlation function Rx1,x2(k, τ)

Rx1,x2(k, τ) = E {x1(k + τ)x2(k)} , (2)

where E{·} indicates the operation of expectation, satisfying that

Rx1,x2(k, τ) = Rx1,x2(k + P, τ) ̸= Rx1,x2(k + 1, τ) ̸= · · · ̸= Rx1,x2(k + P − 1, τ), (3)

where x1(k) and x2(k) are u∆(k) or y∆(k). It is seen that the correlation function
Rx1,x2(k, τ) is a periodic function in k, quite different from the correlation functions of
stationary signals, i.e., Rx1,x2(k, τ) = Rx1,x2(k + 1, τ) = Rx1,x2(k + 2, τ) = · · · .

3.1. Definition of cyclo-stationary relation functions. Consider the periodic corre-
lation function Rx1,x2(k, τ) with period P in k. Then its Fourier transform with respect
to k is defined as

Cx1,x2(α, τ) = lim
N→∞

1

N

N−1∑
k=0

Rx1,x2(k, τ)e
−iαk, (4)

where 0 ≤ α < 2π. Following (4), the cyclo-stationary relation function satisfies

Cx1,x2(α, τ) =


1

P

(m+1)P−1∑
k=mP

Rx1,x2(k, τ)e
−iαpk, α = αp

0, others

(5)
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where αp ∈ AP , AP =
{
αp|αp = p2π

P
, p = 0, 1, . . . , P − 1

}
. Moreover, the Fourier

transform of (5) yields the cyclo-stationary spectral density function

Sx1,x2(α, ω) =

N/2∑
τ=−N/2+1

Cx1,x2(α, τ)e
−jωτ . (6)

It can be seen that if the cyclo-stationary spectral density function is estimated by
the definitions given above, the estimation will be time consuming since the correlation
functions Cx1,x2(k, τ) for both the possible k and τ should be estimated. Correspondingly,
a fast estimation algorithm is desired in the practical applications.
To decrease the computation load and the affection of noise term, the correlation func-

tions are calculated from the average periodograms of the experimental data.

3.2. Estimation algorithm of cyclo-stationary functions. Assume that the experi-
mental data of two cyclo-stationary signals x1(k) and x2(k) are recorded, where the cyclic
period is P . Let xn,p(m) = xn(mP + p), where n = 1, 2, p = 0, 1, . . . , P − 1. Then, for
every n or p, xn,p(m) can be treated as stationary signal. Consequently, from the fast
Fourier transform (FFT) of xn,p(m), the correlation functions of the corresponding signals
are given by

R(mP )
p1,p2

(τP ) = E
{
x1,p1(mPM + τP )x2,p2(mPM)

}
≈ 1

N

N
2∑

l=−N
2
+1

1

N
X

(mP )
1,p1

(eiωl)
(
X

(mP )
2,p2

(eiωl)
)∗
eiωlτP , (7)

where M is the length of shift data block, N is the FFT size which is an integer number
of power of 2. Following the definition of xn,p(m), the following equation

R(mP )
p1,p2

(τP ) = E
{
x1

(
(mPM + τP )P + p1

)
x2(mPM + p2)

}
= Rx1,x2 (mPM + p2, τPP + p1 − p2) (8)

holds for x1(k) and x2(k). Define a correlation matrix ΦR as follows:

R(0)
0,0(0) R(0)

1,0(0) R(0)
2,0(0) · · · R(0)

P−1,0(0) R(0)
0,0(1) R(0)

1,0(1) · · ·

R(0)
1,1(0) R(0)

2,1(0) R(0)
3,1(0) · · · R(0)

0,1(1) R(0)
1,1(1) R(0)

2,1(1) · · ·
...

...
...

...
...

...
...

...

R(0)
P−1,P−1(0) R(0)

0,P−1(1) R(0)
1,P−1(1) · · · R(1)

P−2,P−1(1) R(0)
P−1,P−1(1) R(0)

0,P−1(2) · · ·

R(1)
0,0(0) R(1)

1,0(0) R(1)
2,0(0) · · · R(1)

P−1,0(0) R(1)
0,0(1) R(1)

1,0(1) · · ·
...

...
...

...
...

...
...

...


.

Then, performing Fourier transform with respect to every column of ΦR yields the matrix
ΦC of cyclo-stationary correlation functions.

ΦT
C =



Cx1,x2(0, 0) Cx1,x2

(
2π
N
, 0
)

· · · Cx1,x2

(
2(N−1)π

N
, 0
)

Cx1,x2(0, 1) Cx1,x2

(
2π
N
, 1
)

· · · Cx1,x2

(
2(N−1)π

N
, 1
)

Cx1,x2(0, 2) Cx1,x2

(
2π
N
, 2
)

· · · Cx1,x2

(
2(N−1)π

N
, 2
)

...
... · · · ...

Cx1,x2(0,−1) Cx1,x2

(
2π
N
,−1

)
· · · Cx1,x2

(
2(N−1)π

N
,−1

)


. (9)
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Correspondingly, performing Fourier transform with respect to every column of ΦT
C leads

to the cyclo-stationary spectrum as

ΦS =



Sx1,x2(0, 0) Sx1,x2

(
2π
N
, 0
)

· · · Sx1,x2

(
2(N−1)π

N
, 0
)

Sx1,x2

(
0, 2π

N

)
Sx1,x2

(
2π
N
, 2π
N

)
· · · Sx1,x2

(
2(N−1)π

N
, 2π
N

)
Sx1,x2

(
0, 4π

N

)
Sx1,x2

(
2π
N
, 4π
N

)
· · · Sx1,x2

(
4π
N
, 4π
N

)
...

... · · · ...

Sx1,x2

(
0, 2(N−1)π

N

)
Sx1,x2

(
2π
N
, 2(N−1)π

N

)
· · · Sx1,x2

(
2(N−1)π

N
, 2(N−1)π

N

)


. (10)

From the estimation of ΦC(α, τ) or ΦS(α, ω), the cyclo-stationary components can be
detected by comparing the terms associated to the angles αp.

4. System Identification Algorithm. The approach to determining the model struc-
ture is investigated first.

4.1. Model structure identification. In some applications the model structure is re-
quired to be determined for identification. The information criterion for model structure
identification in the conventional methods generally uses the mean square error (MSE)
of the process model residue, where the signals are treated as stationary ones. However,
under the situation where the external test signals are restricted when stabilizing the un-
stable process in closed-loop, MSE has little explicit difference between the local minima,
and thus it is hard to determine the appropriate model structure.

In the output over-sampling scheme, the information on cyclo-stationarity is applied.

Let the residue of the process model be denoted as ε∆

(
k, θ̂∆

)
ε∆

(
k, θ̂∆

)
=

1

Ĥ∆(q−1)

(
Â∆(q

−1)y∆(k)−
B̂∆(q

−1)

F̂∆(q−1)
u∆(k)

)
, (11)

where Ĥ∆ (q−1) is the estimated noise model, Â∆ (q−1) contains all the unstable poles

of the estimated model Ĝ∆ (q−1) = B̂∆ (q−1) /Â∆ (q−1) F̂∆ (q−1), and θ̂∆ is the model

parameter vector. Following the definition of ε∆

(
k, θ̂∆

)
, if there is less cyclo-stationary

components in ε∆

(
k, θ̂∆

)
, the estimated process model is near to the true one, while

the estimated noise model can approximate the noise term if the residue has small mean
square errors.

Then, the model orders are determined by

arg min
na,nb,nf ,nh

(
log

(
2n

N
σ2
ε

)
+ logMS + |log η1|+ |log η2|

)
, (12)

where σ2
ε is the variance of ε∆(k, θ̂∆), MS is the maximum of Sε∆,ε∆(αp, ω), η1 indicates

the magnitude ratio of Sε∆,ε∆(α, ω) at α = αp vs α ̸= αp, whereas η2 indicates distribution
difference of the spectrum. They are given by

η1 =

1
P−1

P−1∑
p=1

N/2∑
l=−N/2+1

|Sε∆,ε∆(αp, ωl)|

1
P̄

∑
p̄/∈AP

N/2∑
l=−N/2+1

|Sε∆,ε∆(αp̄, ωl)|
, η2 =

1
P−1

P−1∑
p=1

cov
(
Sε∆,ε∆(αp, ωl)

)
1
P̄

∑
p̄/∈AP

cov
(
Sε∆,ε∆(αp̄, ωl)

) , (13)

where P̄ is the number of non-cyclo-stationary angles.
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4.2. Model parameter estimation. In order to apply the information of cyclo-station-
arity, define the correlation matrix Rϕε,ϕ

(k, τ)

Rϕε,ϕ
(k, τ) = E

{
ϕε(k + τ)ϕT (k)

}
. (14)

Then, it is cyclo-stationary, i.e., its Fourier transform with respect to k given by

Cϕε,ϕ
(α, τ) =

1

M

M−1∑
m=0

(
P−1∑
p=0

e−ipαRϕε,ϕ
(mP + p, τ)

)
(15)

has non-zero values for α ∈ AP , while it is 0 for α /∈ AP , where

ϕ(k) =



y∆(k)
...

y∆(k − n1)

−u∆(k − 1)
...

−u∆(k − n1)


, ϕε(k) =


ε∆(k + τ)

ε∆(k + τ − 1)

ε∆(k + τ − 2)
...

ε∆(k + τ − n2)

 , (16)

where n1 is larger than the process model order, n2 is larger than n1 + nH + max(na +
nf , nb), τ = −P, . . . , n2 − max(na + nf , nb). Then, the column rank of Cϕe,ϕ

(αp, τ) is

n1 + max(na + nf , nb), and the orthogonal vectors of Cϕe,ϕ
(α, τ) are the coefficients of

A∆(q
−1)F∆(q

−1)X∆(q
−1) and B∆(q

−1)X∆(q
−1), where X∆(q

−1) is a common polynomial

[4, 8]. Then, arranging the orthogonal vectors of
(
CH

ϕe,ϕ
(αp, τ)Cϕe,ϕ

(αp, τ)
)
yields such

a matrix Ω that [4, 9]

θ̂G∆
= arg min

ˆθG∆

[
1 θ̂

T

G∆

]
Ω

[
1

θ̂G∆

]
. (17)

Then the criterion function for the parameter estimation is as follows:

J
(
θ̂∆

)
= JT

(
θ̂∆

)
+ λJS

(
θ̂G∆

)
, (18)

JT

(
θ̂∆

)
=

1

2N

N∑
k=1

ε2∆(k), JS

(
θ̂G∆

)
=

1

2

[
1 θ̂

T

G∆

]
Ω

[
1

θ̂G∆

]
, (19)

where λ is a coefficient to accommodate the value of JS

(
θ̂G∆

)
with JT

(
θ̂∆

)
. Since

JS

(
θ̂G∆

)
is composed of the normalized Ω, λ can be chosen by the mean eigenvalues of

the Hessian matrices which will be given in (21). Let the initial value of θ̂∆ be θ̂
(0)

∆ . In
the (l + 1)th iteration, the parameter vector can be estimated by

θ̂
(l+1)

∆ = θ̂
(l)

∆ − µH−1
ess

dJT
(
θ̂∆

)
dθ̂∆

+ λ
dJS

(
θ̂G∆

)
dθ̂∆

 , (20)

where µ (0 ≤ µ ≤ 1) is the step-size of the Gauss-Newton algorithm, and the Hessian
matrix is given by

Hess = Hess,T + λHess,S =
1

N

N−1∑
k=0

dε
(
k, θ̂∆

)
dθ̂∆

dε
(
k, θ̂∆

)
dθ̂∆

H

+ λΩθG∆

. (21)

The first term in (21) is calculated from the data in the time domain similarly as the
conventional methods, whereas the second term is the one associated with the subspace
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information of the cyclo-stationarity. The definite matrixΩθG∆

corresponding to θ̂G∆
inΩ

can improve the numerical condition of the Hessian matrix in the numerical optimization.

5. Numerical Simulation Examples.

5.1. Cyclo-stationarity estimation. Two signals x1(k) and x2(k)

x1(k) =
{
x0(0) + w1(0), x0(0) + w1(1), . . . , x0(0) + w1(P − 1),
x0(1) + w1(P ), x0(1) + w1(P + 1), . . . , x0(1) + w1(2P − 1),
x0(2) + w1(2P ), x0(2) + w1(2P + 1), . . .

}
, (22)

x2(k) =
(
1− 1.25q−1 + 0.375q−2

)
x1(k) + w2(k) (23)

are considered in the numerical simulations, where x0(m), m = 0, 1, . . ., are the samples
of a pseudo stationary signal with zero mean and variance σ2

x, while w1(k) and w2(k) are
the stationary noise with zero mean, variance σ2

w1
, σ2

w2
, respectively. Here P is chosen as

3, and σ2
w1

= σ2
w2

= 0.5. It is clear that both x1(k) and x2(k) are cyclo-stationary signals.
The estimated cyclo-stationary spectrum is shown in Figure 2, where the spectral com-

ponents arise only at the angles αp = 0, 2π/3 and 4π/3. The index η1 = 9.1986 shows
that the cyclo-stationary components can be detected from the spectrum easily.

Figure 2. Estimated cyclo-stationary spectrum Sx1,x2(α, ω)

5.2. Identification experiment of magnetic levitation. In the identification exper-
iment, the magnetic levitation is stabilized by a digital PID controller with the control
interval T = 0.0024s. Correspondingly, the process can be approximated by a discrete-
time transfer function model with respect to the interval T , whose nominal theoretical
poles are 1.0886, 0.9682, 0.9202 [10]. There are several poles of the closed-loop close to
the unit circle, and the sensitivity to the external exciting signals is very low in the high
frequency band, whereas the reference is a constant which does offer little information
for identification, hence the numerical conditions are very poor for identification, and
many conventional methods fail to work. The noise is assumed as a stationary stochastic
process, which is caused by the measurement noise, the disturbance of the ball’s rotation,
and the air floating, etc. The structure of noise model is unknown and required to be
identified from the experimental data.

The experimental data are collected for 100 seconds in one identification experiment.
The sampling rate P is chosen as P = 2. The spectral components contained in the sam-
pled data concentrate in a narrow frequency band; therefore, the model structure and the
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parameters are hard to be identified by the conventional methods under the extremely
ill-conditioned numerical conditions. The identification experiments are performed inde-
pendently for 15 times using the experimental data sampled with interval ∆ = T/2. In
every experiment, the model structure determination of the noise model and estimation of
model parameters are executed. The estimated poles of the transfer function are plotted
in Figure 3(a). It is shown that by detecting the cyclo-stationarity of prediction errors, the
selected model structure can describe the dominant characteristics of both the unstable
magnetic levitation process and noise process; by introducing the cyclo-stationary infor-
mation into the numerical optimization of parameter estimation, the number condition of
Hess is improved. Consequently, the proposed algorithm can estimate the unstable poles
from the experimental data under severe numerical conditions in closed-loop manner.

0 0.5 1
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1
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ag
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ar

y

0 0.5 1
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0
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1

Im
ag

in
ar

y

Real
(b) General PEM

Figure 3. Estimated poles in 15 experiments [10]

As a comparison, the results obtained by the conventional method such as PEM method
under the same experiment conditions are also illustrated in Figure 3(b). It is seen that
the conventional methods fail to detect the model structure and unstable dynamics from
the ill-conditioned experiment data just by considering the mean square error, and the
noise model structure does not appropriately describe the main characteristics of the
noise process. As a result, the performance of numerical computation is so poor that the
numerical optimization is influenced by the noise largely and converges to local minima,
and as a result the estimated poles are scattered inside the unit circle.

6. Conclusions. The algorithm of model structure identification and parameter estima-
tion is investigated in this paper for the unstable process in closed-loop. It is illustrated
that the cyclo-stationarity can be detected by an efficient algorithm using fast Fourier
transform. Under the severe numerical conditions where the sensitivity of the closed-loop
is very low to the external signals, while the test signal is unavailable, the proposed algo-
rithm applies the information of cyclo-stationarity to determining the model structure and
parameter estimation, and therefore, it improves the identification performance greatly.
The effectiveness of the algorithm has been illustrated by the numerical simulation and
identification experiment. The performance improvement of numerical optimization and
the model error evaluation will be investigated in the future work.
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