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Abstract. This paper focuses on establishing the closed-form formulas to design a
proportional-integral-derivative-acceleration-jerk (PIDAJ) controller for fourth-order pla-
nts. After plant modeling, the analog PIDAJ controller in continuous-time domain can
be designed by utilizing the proposed formulas in a vector-matrix form. Based on bilinear
transform, the digital PIDAJ controller in discrete-time domain can then be achieved.
The use of the proposed formulas to determine the PIDAJ controller’s parameters for
controlling the air-fuel ratio of an engine is described as an application example to con-
firm their feasibility. MATLAB simulation results confirm the consistency between step
responses of the example system controlled by the designed controllers in continuous-time
domain and discrete-time domain.
Keywords: PIDAJ controller, Continuous-time, Controller design, Discrete-time, Fourth-
order plant, Bilinear transform

1. Introduction. Because of its acceptable performances, a proportional-integral-deriva-
tive (PID) controller is broadly utilized in continuous process controls. According to the
type and order, most type-0 plants in industrial process sector consist of either one first-
order lag plus dead time or three to five first-order lag components [1]. Generally, the
PID controller is accurately employed in second-order plants to achieve optimum solu-
tions. Unfortunately, the transient response characteristics are frequently dissatisfied in
case of controlling both third-order plants and higher-order plants by utilizing the PID
controller for the reason that the number of zeros in the PID controller is less than the
order of the plant [2]. The PID-based control of higher-order plants provides zero state-
state error, but the transient responses cannot meet desired specifications. In order to
minimize this limitation, a proportional-integral-derivative-acceleration (PIDA) controller
implemented by adding one zero to the PID controller has been proposed [3,4]. However,
applying the PIDA controller to controlling fourth-order plants still produces unaccept-
able transient responses. Therefore, the aim of this paper is to propose a technique to
design a new controller called ‘proportional-integral-derivative-acceleration-jerk’ (PIDAJ)
controller that is suitable for controlling the fourth-order plant. The proposed technique
is based on the closed-form formulas to provide ease of finding controller parameters not
only in continuous-time (CT) systems but also in discrete-time (DT) systems, since using
the closed-form formulas offers the straightforward solution by reducing the calculations
required in controller design [5,6].

The rest of this paper is organized as follows. The proposed closed-form formulas
for designing the PIDAJ controller are explained in Section 2. Section 3 demonstrates
how to apply the proposed closed-form formulas for finding the parameters of the PIDAJ
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controller for an engine air-fuel ratio control, and the MATLAB simulation results are also
included in this section. The conclusions and possible future work are given in Section 4.

2. Proposed Closed-Form Formulas for PIDAJ Controller. Figure 1 shows a gen-
eral architecture of the control system used to describe the controller design approach. The
control system design involves finding the parameters of both the CT PIDAJ controller
K(s) and DT PIDAJ controller K(z) for the fourth-order plant G(s). These required
parameters should provide the transient responses to agree with the desired specifications
including settling time (ts) and percent overshoot (P.O.).

Figure 1. General structure of control system

Based on the procedures for digital controller design in [7], three possible ways to obtain
the DT controller are discretization of analog controller, sampled-data design from analog
model, and discrete-time based design from digital model. In this article, the formulas
for finding simultaneously the proportional gain Kp, integral gain Ki, derivative gain Kd,
acceleration gain Ka, and jerk gain Kj of the PIDAJ controllers in both CT and DT
systems are explained. Once, the satisfied CT PIDAJ controller with satisfied transient
response characteristic is obtained. Only using bilinear transform to discretize this CT
PIDAJ controller, then the DT PIDAJ controller can be easily achieved.

2.1. Continuous-time frameworks. Let the transfer function of the plant G(s) be
assumed as

G(s) =
b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0
, (1)

where a3, a2, a1, a0 and b1, b0 are the numerator and denumerator coefficients of the given
plant model, respectively. The transfer function of the PIDAJ controller can be stated as

K(s) = K
(s+ a)(s+ b)(s+ c)(s+ d)

s
=

Kjs
4 +Kas

3 +Kds
2 +Kps+Ki

s
, (2)

where a, b, c and d are the zeros of PIDAJ controller. Then, the transfer function of the
closed-loop system in Figure 1 is

Y (s)

R(s)
=

K(s)G(s)

1 +K(s)G(s)
. (3)

Hence, the actual characteristic equation can be written as

F (s)
actual

(1 +Kjb1)
= s5 +

(a3 +Kab1 +Kjb0)

(1 +Kjb1)
s4 + · · ·+ (a2 +Kdb1 +Kab0)

(1 +Kjb1)
s3

+ · · ·+ (a1 +Kpb1 +Kdb0)

(1 +Kjb1)
s2 + · · ·+ (a0 +Kpb0 +Kib1)

(1 +Kjb1)
s

+ · · ·+ (Kib0)

(1 +Kjb1)
.

(4)

The desired specifications of the control system that are designed are frequently stated
in characteristics of transient and steady state responses, which are exhibited by the
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dominant closed-loop poles as follows:

P.O. = e

(
−ζπ√
1−ζ2

)
× 100%, ts = − ln

(
0.02

√
1− ζ2

)/
ζωn. (5)

From (5) in terms of P.O., the damping ratio can be obtained as

ζ =

√√√√[
ln

(
P.O.

100

)]2/{
π2 +

[
ln

(
P.O.

100

)]2}
, (6)

and the undamped natural frequency can be achieved from the given ts(±2%) as

ωn = − ln
(
0.02

√
1− ζ2

)/
ζts. (7)

Hence, the locations of the dominant closed-loop poles are

q, q̂ = sd± = −ζωn ± jωn

√
1− ζ2. (8)

The objective of the proposed design is to find the Kp, Ki, Kd, Ka and Kj of the PIDAJ
controller to provide that all closed-loop poles or the roots of characteristic equation in
(3) are placed at the locations for obtaining desired output responses. These desired pole
locations can be expressed by the designed characteristic equation as

F (s)
design

=
(
s2 + 2ζωns+ ω2

n

)
(s+R)(s+ r)(s+ p) = 0

= (s+ q)(s+ q̂)(s+R)(s+ r)(s+ p)

= s5 + (p+ r +R + 2ζωn)s
4 + · · ·+

{
(r +R)p+Rr + 2ζωn(p+ r +R) + ω2

n

}
s3

+ · · ·+
{
Rrp+ 2ζωn [(r +R)p+Rr] + ω2

n(p+ r +R)
}
s2

+ · · ·+
{
2ζωnRrp+ ω2

n [(r +R)p+Rr]
}
s+ ω2

nRrp.

(9)

Based on the design region proposed in [3], the real pole (S + R) can be chosen by
neglecting the poles (s + r) and (s + p). Equating the coefficients with similar power
series between (4) and (9) yields:

s4| : (a3 +Kab1 +Kjb0)/(1 +Kjb1) = (p+ r +R + 2ζωn),

s3| : (a2 +Kdb1 +Kab0)/(1 +Kjb1) =
{
(r +R)p+Rr + · · ·+ 2ζωn(p+ r +R) + ω2

n

}
,

s2| : (a1 +Kpb1 +Kdb0)/(1 +Kjb1) =
{
Rrp+ · · ·+ 2ζωn [(r +R)p+Rr] + · · ·+ ω2

n(p+ r +R)
}
,

s1| : (a0 +Kpb0 +Kib1)/(1 +Kjb1) =
{
2ζωnRrp+ · · ·+ ω2

n [(r +R)p+Rr]
}
,

s0| : (Kib0)/(1 +Kjb1) = ω2
nRrp.

(10)

The simple linear system can then be obtained in a vector-matrix form Ax = b as
follows:

A =


0 0 0 b1 {b0 − b1(p+ r +R + 2ζωn)}
0 0 b1 b0 −b1

{
(r +R)p+Rr + · · ·+ 2ζωn(p+ r +R) + ω2

n

}
b1 0 b0 0 −b1

{
Rrp+ · · ·+ 2ζωn [(r +R)p+Rr] + · · ·+ ω2

n(p+ r +R)
}

b0 b1 0 0 −b1
{
2ζωnRrp+ · · ·+ ω2

n [(r +R)p+Rr]
}

0 b0 0 0 −b1(ω
2
nRrp)

 ,

x =


Kp

Ki

Kd

Ka

Kj

 , b =


−a3 + (p+ r +R + 2ζωn)

−a2 +
{
(r +R)p+Rr + · · ·+ 2ζωn(p+ r +R) + ω2

n

}
−a1 +

{
Rrp+ 2ζωn [(r +R)p+Rr] + · · ·+ ω2

n(p+ r +R)
}

−a0 +
{
2ζωnRrp+ ω2

n [(r +R)p+Rr]
}

ω2
nRrp

 .

(11)

From design specification criteria, r, R, q, q̂ and p are the desired root locations. To
find the Kp, Ki, Kd, Ka and Kj of the PIDAJ controller in (2), the formula is

x =
[
Kp Ki Kd Ka Kj

]T
= A−1b. (12)
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Figure 2. Discretization

Figure 3. Trapezoidal approximation [9]

2.2. Discrete-time frameworks. In order to achieve the DT controller in z-domain,
the CT controller is then discretized as depicted in Figure 2 [8].
One of possible methods for mapping from the s-plane to z-plane is the exact conversion

between the Laplace and z-plane by using

z = esT , (13)

where T is the sampling time. From Figure 3 [9], let y(k − 1) and y(k) be the integrated
areas under curve from the start time to the (k − 1)th sample and to the kth sample,
respectively. Then, the total area under curve can be approximated as

y(k) = y(k − 1) +
T

2
{x(k) + x(k − 1)} . (14)

Hence, the z transform of (14) is

Y (z)

X(z)
=

T

2

(
1 + z−1

1− z−1

)
;

(
≡ 1

s

)
. (15)

Finally, the bilinear transformation can be written as

s =
2

T

(
z − 1

z + 1

)
. (16)

Substituting (16) into (3), the formula of the parameters of the DT PIDAJ controller
can be given by

K(z) =
β4z

4 + β3z
3 + β2z

2 + β1z + β0

(z − 1)(z + 1)3
=

Kz(z − az)(z − bz)(z − cz)(z − dz)

(z − 1)(z + 1)3
, (17)

where, the discrete-time coefficients vector is
β4

β3

β2

β1

β0

 =
1

2T 3


2T 3 T 4 4T 2 8T 16
4T 3 4T 4 0 −16T −64
0 6T 4 −8T 2 0 96

−4T 3 4T 4 0 16T −64
−2T 3 T 4 4T 2 −8T 16




Kp

Ki

Kd

Ka

Kj

 . (18)
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3. Example of Usage. Reducing the exhaust pollution emissions in an automobile by
using the feedback control of the air-to-fuel ratio has been a significant topic since 1980s
[10]. An engine operation at or near a particular air-to-fuel ratio needs the regulation of
the air and fuel flow rates into the manifold system. The fuel command and engine speed
are considered as the input and output, respectively. The plant transfer function is given
as

G(s) =
2.381

(s+ 0.25)(s+ 4.762)(s+ 15.1515± j15.1515)

=
b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0
,

(19)

where b1 = 0, b0 = 2.381, a3 = 35.315, a2 = 612.205, a1 = 2337.3 and a0 = 564.6013,
respectively. In this case, the desired specifications are P.O. ≤ 5% and ts(±2%) ≤ 1 sec.

3.1. Continuous-time frameworks solution. From the given P.O., the damping ratio
is

ζ =

√√√√[
ln

(
P.O.

100

)]2/{
π2 +

[
ln

(
P.O.

100

)]2}
= 0.6901, (20)

and from the given ts(±2%), then the undamped natural frequency is

ωn = − ln
(
0.02

√
1− ζ2

)/
ζts = 6.1373 rad/sec. (21)

Therefore, the dominant closed-loop poles are located at

q, q̂ = sd± = −ζωn ± jωn

√
1− ζ2 = −4.2354± j4.4416. (22)

Substituting, b1, b0, a3, a2, a1 and a0 from (19), ζ = 0.6901, ωn = 6.1373 rad/sec,
p = 0.1 and r, R = 15.5± j15.5 into (11), yields:

x=


0 0 0 0.42 0
0 0 0 0 0.42
0 0 0.42 0 0
0 0.42 0 0 0

0.42 0 0 0 0


−1 

4.2558
172.5027
2978.7
18076
1809.9


=
[
Kp Ki Kd Ka Kj

]T
=

[
7591.7 760.131 1251 72.4497 1.7874

]T
.

(23)

From (2) and (23), the transfer function of the designed PIDAJ controller using the
closed-form formula can be achieved as follows:{

K(s) =
K(s+ a)(s+ b)(s+ c)(s+ d)

s
,

K = 1.7874, a, b = −14.4626± j12.4015,
c = −11.5068, d = −0.1018.

. (24)

3.2. Discrete-time frameworks solution. To obtain the DT PIDAJ controller in (17),
firstly, the transform matrix in (18) is used to transform the vector of CT coefficients,
which contains the PIDAJ controller’s parameters, to the vector of DT coefficients as
follows.

For the sampling time 1/100 sec/samples, the vector of DT coefficients can be stated
as

[
β4 β3 β2 β1 β0

]T
=


1.7455× 107

−6.2978× 107

8.5295× 107

−5.1416× 107

1.1644× 107

 . (25)
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If the CT PIDAJ controller is stated in the zero-pole-gain form, the DT PIDAJ con-
troller can be obtained by the following formula:{

K(s) =
Ks(s+ as)(s+ bs)(s+ cs)(s+ ds)

s
, K(z) =

Kz(z − az)(z − bz)(z − cz)(z − dz)

(z − 1)(z + 1)3
,

Kz =
Ks(asT + 2)(bsT + 2)(csT + 2)(dsT + 2)

2T 3
,

az =

(
asT − 2

asT + 2

)
, bz =

(
bsT − 2

bsT + 2

)
, cz =

(
csT − 2

csT + 2

)
, dz =

(
dsT − 2

dsT + 2

)
.

(26)

Then, the CT PIDAJ controller in (24) can be discretized by bilinear transformation
as{

K(z) =
Kz(z − az)(z − bz)(z − cz)(z − dz)

(z − 1)(z + 1)3
,

Kz = 1.7455× 107, cz = 0.8912,

az, bz = 0.8589± j0.1075, dz = 0.999.
. (27)

In the same way, the DT plant G(z) can also be obtained as follows:{
G(s) =

Ks

(s+ p1s)(s+ p2s)(s+ p3s)(s+ p4s)
, G(z) =

Kz(z + 1)4

(z − p1z)(z − p2z)(z − p3z)(z − p4z)
,

Kz =
KsT

4

(p1sT + 2)(p2sT + 2)(p3sT + 2)(p4sT + 2)
,

p1z =

(
p1sT − 2

p1sT + 2

)
, p2z =

(
p2sT − 2

p2sT + 2

)
, p3z =

(
p3sT − 2

p3sT + 2

)
, p4z =

(
p4sT − 2

p4sT + 2

)
.

(28)

Then, the DT plant G(z) can be written asG(z) =
Kz(z + 1)4

(z − p1z)(z − p2z)(z − p3z)(z − p4z)
,

Kz = 1.2482× 10−9,
p1z = 0.9975, p3z = 0.85 + j0.1303,
p2z = 0.9535, p4z = 0.85− j0.1303.

. (29)

3.3. Simulation results. Figure 4 shows the root loci in both s-plane and z-plane of the
controlled system when p is varied from 0.1 to 1.0. The corresponding unit step responses
of the root loci are displayed in Figure 5. Figure 6 shows the unit step response when
p = 1.0, and the gain K = Kj by increasing to 10 times. The simulation results show that
the unit step responses of the controlled system in both continuous-time and discrete-time
are similar.

(a) s-plane (b) z-plane

Figure 4. Root loci of the controlled system for p = 0.1-1.0
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(a) Continuous-time control (b) Discrete-time control

Figure 5. Unit step responses of the controlled system by varying p from
0.1 to 1.0

(a) Continuous-time control (b) Discrete-time control

Figure 6. Unit step responses of the controlled system for p = 1.0 and K × 10

4. Conclusions. The closed-form formulas to find the parameters of the PIDAJ con-
troller are derived and given in both CT and DT systems. Example usage of the proposed
formulas confirms that the PIDAJ controller can be designed with non-complicated pro-
cedures. Furthermore, these formulas are also available for other design methods such as
root locus technique. Implementation of the PIDAJ controller in real applications is the
future work.
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