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ABSTRACT. Time series discord is a subsequence which has the largest difference com-
pared to the other subsequences of a time series. It can be considered as a type of anom-
alies in time series and it has many uses in a wide range of areas. In this paper, we
propose a novel approach based on bit serialization and probability for time series dis-
cord discovery. This work continues our first attempt in reducing the time and space
cost of constructing heuristics with an aim of pruning away unnecessary searches in the
brute-force algorithm. In our algorithm, using bit representation and formulas based on
probability enables to discover potential discord candidates quickly. Fxzperimental results
on some time series datasets demonstrate the effectiveness and efficiency of our proposed
algorithm compared to HOT SAX and our recent algorithm while the discords discovered
by these methods are the same.
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1. Introduction. Time series discord is defined as a subsequence of a longer time series
that is maximally different to other subsequences [1]. Time series discords have demon-
strated their uses in many data mining tasks such as summarization, clustering, anomaly
detection, and data cleaning. They are also used in a variety of areas including medicine,
surveillance, and industry [2,3].

A naive algorithm for time series discord discovery (brute-force) requires two nested
loops, in which each subsequence is compared to the remaining subsequences of the time
series to find out the discord. The time complexity of this algorithm is O(m?), with
m being the length of the time series. It is clearly inefficient so there have been many
works on suggesting heuristics to reorder the subsequences considered in two loops with
the hope that it is possible to exit early from the loops. To the best of our knowledge,
most algorithms reduce the time spent on the loops at the expense of much time and
space for building heuristics [1-8]. In this paper, we propose a novel bit serialization and
probability-based algorithm to discover time series discord which is especially efficient in
time and space in building heuristics and in general. Moreover, our method still returns
exact discord. The main contributions of our work are the following.

e Propose a new algorithm for time series discord discovery which is effective and
efficient in time and space.

e Do the experiments on the various data sets to show the effectiveness and the effi-
ciency of our algorithm.

e Compare our new algorithm with HOT SAX, the most well-known algorithm for
time series discord discovery and with our recent algorithm [12] adequately in time
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efficiency, memory cost, the number of times distance function called, the number of
parameters, and then discuss obtained results.

The rest of the paper is organized as follows. In Section 2, we give some definitions, and
present generic framework for time series discord discovery and related works. Then, we
propose our new algorithm in Section 3. The experiments, results obtained and discussion
are presented in Section 4. Finally, Section 5 draws the conclusion and presents future
works.

2. Background and Related Works.

Definition 2.1. Time Series Discord: Given a time series T', the subsequence D of length
n 1s called the discord of T if D has the largest distance to its nearest non-self match.
That is, for every subsequence C' of T different from D, non-self match MC of C, and
non-self match MD of D: min(Dist(D, MD)) > min(Dist(C, MC)).

In it, Dist() is a distance function to measure distance from two subsequences of the
same length. In our paper, we use the Euclidean distance function as a Dist() due to its
simplicity and efficiency.

Definition 2.2. Fuclidean Distance: Given two time series (Q and C' of length n, the
FEuclidean distance between them is defined as

Dist(Q,C) =

In it, ¢; and ¢; are the i*" value of the time series ) and C respectively.

Definition 2.3. Non-Self Match: Given a time series T, containing a subsequence C' of
length n beginning at position p and a matching subsequence M beginning at q, we say
that M is a non-self match to C at distance of Dist(M,C) if |p — q| > n.

From the aforementioned definitions, it can be seen that brute-force is the simplest
algorithm to find discord. We just need two nested loops, in which the outer loop considers
each candidate subsequence of the time series, and the inner loop scans other subsequences
to identify the candidate’s nearest non-self match. The candidate with the largest distance
to its nearest non-self match is considered the discord. This algorithm can find the
exact discord with only one parameter which is the length of the discord. However, it is
impractical for large datasets due to its time complexity O(m?).

The authors in [1] suggested a generic framework based on two heuristics to improve
the brute-force algorithm, one for the order in which the outer loop visits each candidate
subsequence, and the other to determine the order in which the inner loop visits the
remaining subsequences. It is expected that the outer heuristic will consider the subse-
quences with the highest ability to become the discord first while the inner heuristic will
set higher priority to the subsequences with shorter distances to the current candidate
subsequence of the outer loop in order to exit early from the loops of the brute-force. This
framework is called the heuristic discord discovery and illustrated in Table 1.

The first and most well-known algorithm following the generic framework is HOT SAX
[1]. The authors first reduced the dimensionality of subsequences by Piecewise Aggregate
Approximation (PAA) representation before discretizing them into words by Symbolic
Aggregate Approximation representation (SAX) and taking advantage of these words’
frequencies to build two heuristics. The intuitive idea behind this is that the word with
the lowest frequency is more likely to be the discord. Two data structures used to support
this process include: an array of words with their corresponding frequencies, and an
augmented trie to store the positions of words in the original time series. Similarly, in
[4,5], subsequences were transformed and discretized into words, using the same data
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TABLE 1. Heuristic discord discovery [1]

1 | Function [dist, loc] = Heuristics_Search(T, n, Outer, Inner)

2 best_so_far_dist = 0

3 best_so_far_loc = NaN

4 | For Each p in T ordered by heuristic Outer //Begin Outer Loop
5 nearest_neighbor_dist = infinity

6 For Each ¢ in T ordered by heuristic Inner //Begin Inner Loop

7 If lp—q|>n / /non-self match?

8 If Dist(t,, ... ,tpsn—1,tq, -, tgrn—1) < best_so_far_dist

9 Break //Break out of Inner Loop
10 EndIf

11 If Dist(t,, ... ,tpsn—1,tq -, tgrn_1) < nearest_neighbor_dist
12 nearest-neighbor_dist = Dist(t,, ..., tprn—1,tqs- - tgtn—1)
13 EndIf

14 EndIf

15 EndFor //End Inner Loop
16 IF nearest_neighbor_dist > best_so_far_dist

17 best_so_far_dist = nearest_neighbor_dist

18 best_so_far_loc = p

19 EndIf

20 | EndFor //End Outer Loop
21 | Return [best_so_far_dist, best_so_far_loc]

structures. Using Haar wavelet transform and constructing gradually the trie enable
to exit earlier from the loops and determine the word size dynamically. The method
proposed in [6] replaces SAX with aSAX, in which how to discretize subsequences into
words depends on data instead of being fixed like SAX. This method takes more time and
space for pre-processing stage while it allows the loops to exit earlier than HOT SAX.
The authors in [7] suggested to transform subsequences into bit serialization, and then
cluster those bit series. Clusters with the fewest elements are considered first in the outer
loop while the inner loop sets higher priority for elements in the same cluster. In [8], the
piecewise vector quantized approximation technique is used to discretize subsequences.
Two data structures including a Vector Quantization (VQ) representation table and an
augmented trie support building heuristics with the idea that the VQ representation
with the lowest frequency has more chance to be the discord. In general, these solutions
require remarkable memory cost for auxiliary data structures and time for constructing
two heuristics.

Recently, in [9], the authors suggested a novel algorithm for the J-distance discord
discovery, in which J-distance discord is an extended definition of discord to solve the
problem of “Twin Freak” in industries. This algorithm can identify anomalies which
happen several times and it is applied to detecting anomalies in aircraft engine gearbox
data. The authors in [10,11] suggested to combine time series discord discovery and
privacy preserving. Apart from detecting discord, they must conduct encryption and
decryption processes to ensure data privacy. In general, in order to solve their own
problems, the recent algorithms have to suffer high computational cost.

In terms of the original time series discord discovery problem, our first solution in [12]
proposed an information theory-based algorithm (IDD) in an attempt to reduce memory
cost and time due to two data structures including an array and a dictionary, and sim-
ple formulas for building heuristics. To be specific, subsequences were transformed and
discretized into words like HOT SAX before the weighted density of every subsequence
was calculated and used for heuristics. The intuitive idea behind this is that the word



676 T.-D. DO, P.-D. NGO, H.-V. T. HOANG AND T.-V. T. DUONG

with the lowest weighted density is more likely to be the discord. In the next section,
we present our new bit serialization and probability-based algorithm which improves the
algorithm in [12] in time efficiency, memory cost. Furthermore, it uses fewer parameters
and has fewer numbers of times distance function called.

3. The Bit Serialization and Probability-Based Algorithm. Our algorithm also
follows the generic framework in which we build two heuristics based on bit serialization
and probability to determine order of subsequences considered in two loops. Firstly, sub-
sequences are extracted from the original time series 7' (length m) by a sliding window of
length n. These subsequences are then reduced dimensionality using PAA representation
to length w << n. This representation divides each subsequence into w equal segments
and the value of each segment is the average value of all points in that segment. After
that, in order to transform PAA segments into bit series, we start from the first segment
and compare the values of two successive segments. If there is an upward trend, we have
a bit 1 while a downward trend is represented by a bit 0. The result obtained after this
process is a bit series with length w — 1. An example of bit series is shown in Figure 1.
The details are presented in [7].
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FIGURE 1. An example of bit series 7' with the length of 3 = {1,0,1}
transformed from 4 segments [7]

Given that:

B* is the k' bit of bit series for 1 < k < w — 1;

v¥ is the value of k™ bit of the bit series x, v¥ € {0,1}.
The probability that B* equals 1:

the number of bit series with B* =1
m—n+1
in which m — n + 1 is the number of bit series or the number of subsequences.
The probability that B* equals 0:

P(B*=0)=1-P(B"=1) (2)
The probability of bit series x:

P() =[] P(B" =) e

P(BF=1) =

with the assumption that values of all positions of the bit series are independent [13].
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Based on the computation of the probabilities of all bit series, we construct two heuris-
tics as follows.

Firstly, we reorder the candidate subsequences in the outer loop using following heuris-
tic.

Outer Loop Heuristic: The subsequences, which have the lowest probability for
their bit serialization, are considered first in the outer loop. After that, the remaining
subsequences are visited in a random order.

The intuition behind this heuristic is that the lower the probability of bit series is, the
more likely that bit series is a discord.

When the subsequence s; is considered in the outer loop, we reorder the subsequences
considered in the inner loop according to the following inner loop heuristic.

Inner Loop Heuristic: We find subsequences which have the same representation in
bit serialization with s; to consider them first in the inner loop. After that, the remaining
subsequences are visited in a random order.

The reason behind this heuristic is that two subsequences with the same representation
in bit serialization are likely to be similar. Therefore, the distance between them is
expected to be minimal and the inner loop is likely to exit early.

We use two data structures to support the Outer Loop Heuristic and Inner Loop Heuris-
tic: an array of bit series where the last column contains the probability of those bit series
and a dictionary which helps to retrieve instantly the positions of subsequences in the o-
riginal time series mapped to each bit series by using the key or that bit series. Figure 2
presents these data structures.

111 0 0 | 001 Key Values
1 1 1 | 0.005 100 1 3 ‘
1 0 | 0 | 001 111 2
m-n+1 | 1 1 0 | 0.002 110 m-n+1 ‘

FIGURE 2. Two data structures are used to support heuristics: (Left) an
array of bit series with their probabilities; (Right) a dictionary to look up
the positions of subsequences corresponding to bit series in the original time
series.

In our method, the transformed subsequences or bit series are only used to construct
two heuristics for the outer and inner loops. For the distance function in our proposed
main algorithm, we use Euclidean distance function between the original subsequences
to find the exact discord. This is because in Definition 2.1, discord is defined according
to distance between original subsequences. Transformed subsequences are approximate
subsequences of the original ones and distance between them only gives approximate
results.

The proposed algorithm is called BPDD (Bit serialization and Probability based Dis-
cord Discovery) and presented in Table 2.

4. Experimental Evaluation.

4.1. Experiments. For experimental evaluation, we implemented three algorithms: HOT
SAX, IDD and BPDD. They are compared in terms of time efficiency, memory cost, the
number of times distance function called and the number of parameters. All experiments
were implemented by Matlab R2016a on a Core i7, 2 CPU 2.9GHz, 8GB RAM, Windows
7 64-bit laptop.
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TABLE 2. Bit serialization and Probability based Discord Discovery (BPDD)

Input: A time series with length of m
Output: Discord length of n

Step 1: All subsequences are extracted from the original time series by sliding
window length n and converted to bit series with length of w — 1.

Step 2: Compute the probability of each transformed subsequence by using for-
mulas (1)-(3).

1 Fork=1tow—1 do

2 Compute P (Bk = 1) according to (1)
3 Compute P (Bk = ()) according to (2)
4 Forx=1tom—n+1 do

5 Compute P(x) according to (3)

Step 3: Based on the probability in bit serialization of each subsequence that we
have computed, we construct two heuristics for the outer and inner loops and run
the heuristic discord discovery framework in Table 1.

TABLE 3. Characteristics of datasets and parameters chosen

Dataset Time series length | n |w | A
ECG 20000 25515 |3
Respiration 4000 150 | 5| 3
Power Demand 20000 70|53
Space Shuttle 5000 100 5|3
Video Surveillance 5000 200 (5|3

TABLE 4. Runtime of HOT SAX, IDD and BPDD (in seconds)

Dataset HOT SAX | IDD | BPDD
ECG 412.05 80.71 | 31.90
Respiration 18.84 5.13 4.41
Power Demand 623.35 254.91 | 81.63
Space Shuttle 39.20 18.13 5.52
Video Surveillance 29.98 15.52 5.57

We use 6 datasets from the UCR Time Series Data Mining archive for discord discovery
[14]. They are from different areas such as medicine, manufacturing and science.

For each dataset, we set the same parameters for the three algorithms to evaluate them
fairly. While HOT SAX and IDD have three parameters: length of discord n, word size
w and alphabet size a, BPDD has two parameters: length of discord n, word size w.
The lengths of discords are chosen according to experts [3]. The parameters used for the
datasets are presented in Table 3.

The experimental results are obtained by executing each of the three algorithms ten
times and the average of results is taken.

4.2. Results and discussion. To evaluate the time efficiency of the three algorithms,
we measure their runtime on aforementioned datasets. The results are presented in Table
4.

It can be seen that BPDD algorithm is much faster than HOT SAX. It is even re-
markably faster than IDD algorithm which is our first attempt in reducing computational
cost of discord discovery. This improvement can be explained by the fact that instead of
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discretizing subsequences into characters by SAX representation like HOT SAX and IDD,
BPDD uses bit representation which makes the computation more efficient. The formulas
proposed in BPDD are simpler than those of IDD while the dictionary of BPDD helps to
retrieve information faster than the augmented trie of HOT SAX.

In the heuristic discord discovery framework, the distance function between two subse-
quences in the original time series must be called to calculate their real distance, which
enables to find discord. The number of times distance function called in three algorithms
is presented in Table 5.

TABLE 5. The number of times distance function called in HOT SAX, IDD

and BPDD
Dataset HOT SAX IDD BPDD
ECG 2,506,345 2,724,931 | 2,675,592
Respiration 580,355 476,111 585,025

Power Demand 19,266,502 | 15,250,559 | 5,284,319
Space Shuttle 1,114,635 1,735,844 | 846,990
Video Surveillance | 1,561,344 1,951,510 | 670,898

From the above results, it is clear that, the number of distance function calls in BPDD
is remarkably lower than that of IDD, which indicates that the heuristics of BPDD is
better in general. Compared to HOT SAX, heuristics in BPDD is better than those of
HOT SAX in three datasets: Power Demand, Space Shuttle and Video Surveillance while
the effectiveness of heuristics in BPDD is a bit lower in the two remaining datasets. In
general, the effectiveness of heuristics in BPDD and that in HOT SAX are competitive.

In terms of memory cost, BPDD is more efficient than HOT SAX and IDD. To be
specific, for HOT SAX, the array of SAX words requires (m —n + 1) % (w + 1), with
(m—mn+1) being the number of words or subsequences, w being the number of characters
in each word (the length of word), and one for the last column. Similarly, IDD requires
(m—n+1) % (w+ 1) for its array of SAX words. Meanwhile, the memory required by
BPDD for its array of bit series is (m — n + 1) * w because the length of bit series is
w — 1. In order to calculate heuristics, IDD needs three arrays to store the computed
values while BPDD needs two arrays. However, the sizes of these arrays are w << m.
On the other hand, the dictionary used in BPDD requires at least (m —n + 1) + 1 if all
bit series are the same and at most (m —n + 1) = 2 if all bit series are different one from
another. The memory cost for the dictionary of IDD is similar to that of BPDD while the
augmented trie of HOT SAX needs at least (m —n+ 1) +w and at most (m —n+ 1) *w.

5. Conclusion and Future Works. In this work, we proposed a bit serialization and
probability-based algorithm for time series discord discovery. Our algorithm uses bit
representation and simple formulas based on probability to improve the performance of
calculating heuristics before applying the generic framework. We conducted experiments
on six datasets to evaluate our algorithm, HOT SAX and IDD. Experimental results
have shown that our BPDD algorithm outperforms HOT SAX and IDD in terms of time
efficiency and memory cost. The heuristics constructed by BPDD are better than IDD
and competitive to those of HOT SAX. Furthermore, the number of parameters of BPDD
is fewer than IDD and HOT SAX while their accuracies are the same.

In the future, we are working in some directions to extend our algorithm. Firstly, we will
take advantage of computational power of bit serialization to construct better heuristics
while maintaining the time efficiency and memory cost. We also continue reducing the
number of parameters, towards parameter-free algorithms. Finally, we will extend our
work on data streams, which is the most challenging problem recently.
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