ICIC Express Letters ICIC International (©2019 ISSN 1881-803X
Volume 13, Number 8, August 2019 pp. 697—703

ENSEMBLE BASED MACHINE LEARNING FOR OPTIMIZING
TOXICITY IN CANCER DRUG DISCOVERY

HERI KUSWANTOY*, ERLIN SUKMAPUTRI! AND HAYATO OHWADA?

!Department of Statistics
Faculty of Mathematics, Computing and Data Science
Institut Teknologi Sepuluh Nopember (ITS)
Surabaya, Fast Java 60111, Indonesia
*Corresponding author: kuswanto.its@gmail.com

2Department of Industrial Administration
Faculty of Science and Technology
Tokyo University of Science
2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
ohwada@rs.tus.ac.jp

Received January 2019; accepted April 2019

ABSTRACT. Cancer is a disease caused by abnormal growth due to the cells of the body’s
tissues that turn into cancer cells. Radiotherapy is one of the cancer treatments that
has a side effect of killing normal cells around cancer cells. Radioprotector is made
to reduce normal cell death and increase cancer cell death. This research identifies the
compounds corresponding to the toxicity with normal cell death rate below and above
20%. The data used in this study is the level of toxicity to classify compounds for ra-
dioprotector consisting of 84 compounds with 217 predictors (features). Two ensemble
based machine learning approaches are applied to overcoming the problem of high dimen-
sionality of the data, namely Logistic Regression Ensembles (LORENS) and Ensemble
Support Vector Machine (AdaBoost-SVM). The AdaBoost-SVM is applied to the impor-
tant features selected by Mean Decreasing Gini (MDG) index. The results showed that
the AdaBoost-SVM outperforms LORENS significantly. The accuracy is 0.7889 obtained
by examining 5% of most important features.

Keywords: Cancer, High dimensionality, Compound, Toxicity, LORENS, AdaBoost-
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1. Introduction. Cancer is characterized by uncontrolled cell growth and the ability of
these cells to attack other biological tissues, either by direct growth in adjacent tissues
(invasion) or by migration of cells to distant (metastatic) sites in the body [1]. One com-
mon cancer treatment is radiotherapy, i.e., a radiation therapy treatment for cancer using
radiation such as gamma rays, x-rays or high-energy electrons. The way radiotherapy
works is to give radiation doses that turn off the tumor in a predetermined area (target
volume) while the surrounding normal tissue gets the minimum dose. Treatment using
radiotherapy has significant side effects, namely killing normal cells around cancer cells.
This is because radiotherapy damages DNA in cancer cells and makes DNA stimulate
ph3 for apoptosis (cell death). p53 is a tumor suppressor gene that acts to stop tumor
development. When cells are exposed to radiotherapy, DNA in cancer cells is damaged
and results in apoptosis occurring in normal cells and killing these cells. In order to over-
come the effects of radiotherapy, Ariyasu et al. [2] designed radioprotector or radiation
protection by looking for components of compounds related to p53 protein. The design
involves forming 84 compounds that were thought to be good for the radioprotector. Fur-
thermore, two experiments have been conducted. In the first experiment, the compound
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was given to normal cells to measure toxicity. The second experiment was carried out by
giving compounds to cells that had been exposed to gamma radiation (10 Gy) to measure
the radiation protection function. The indicator used in both trials is the cell death rate.
The synthetic compounds needed for radioprotector are those that have low cell death
rates on toxicity and high cell death rates in the radiation protection function.

This study carries out an analysis on the level of toxicity where toxicity is the ability
of a molecule or chemical compound that can cause damage to certain parts of living
things [3]. Using the dataset of [2], a study by [4] predicted radiation protection and
toxicity using Random Forest (RF) and Support Vector Machine (SVM). The results
showed that the Random Forest is better used to predict toxicity while SVM is used to
predict radiation protection. Another study conducted by [5] compared the results of the
classification accuracy of compounds for optimization of radiation protection and toxicity
using Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting
(XGB), and k-Nearest Neighbor (kNN). All of these approaches use selected features as
the basis of classification. The study found that using 10% of the most important features
led to the optimal accuracy except the XGB that was optimal under 15% most important
features.

The data produced by [2] is a high dimensional data where the number of features is
larger than the number of observations (compounds). Both studies carried out feature
selection in handling high dimensional data using feature importance. According to [6] the
challenge in the case of high dimensional data is poor accuracy due to the phenomenon of
curse of dimensional and overfitting models on training data. There are two approaches
to overcoming the challenges of high dimensional data, namely reducing the dimensions
of the dataset or by applying methods that are independent of dimensional data. The
common way is to do a feature selection on variables or use ensemble-based classifications.

This study investigates the performance of ensemble based machine learning approaches
to overcome the high dimensional problem on the compounds of radioprotector dataset.
This study is different with the previous studies on the way to treat the feature during
the classification process, and is expected to improve the prediction accuracy. One of
the methods applied is LORENS. Lim et al. [7] argued that LORENS is also able to
handle unbalanced response variables and improve accuracy, sensitivity, and specificity
compared to other classification methods. LORENS has been widely applied in several
previous studies, e.g., by [8], where LORENS was used in classifying consumer defection
cases with very large sample sizes. Furthermore, [9] conducted a classification on gene
expression in Alzheimer’s disease by comparing LORENS with the Naive Bayes method.
It is found that LORENS outperforms Naive Bayes. Both [8] and [9] found that LORENS
performed well and outperformed the competing methods.

This research also applies ensemble of Support Vector Machine (SVM). The SVM
method finds the best separator function or hyperplane that separates two classes in the
input space. Over the past few years, SVM has been applied to the problem of high dimen-
sional data, e.g., remote sensing classification, web documents and microarray analysis
[6]. The ensemble method on SVM uses Adaptive Boosting (AdaBoost). The AdaBoost
uses SVM as a base classifier for classification, and it has been applied in many previous
studies such as by [10] which discussed the classification of remote sensing with high-
dimensional data using SVM, ANN, and Maximum Likelihood. The study showed that
SVM outperforms the others. Research by [11] discussed the prediction of gene expression
of several types of cancer and ensemble SVM has been proven to have optimal accuracy
compared to single SVM and kNN. In addition, the study of [12] showed that ensemble
SVM is a good approach to predict breast cancer on small and large scale data. Other
studies that applied Ensemble SVM (AdaBoost-SVM) on the case of high dimensional
data are [13-15] among others. Based on the above description, this study uses LORENS
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and Ensemble of SVM methods in predicting the level of toxicity for cancer drug design.
The classified compounds with low toxicity can be recommended for radioprotector.

2. Research Methodology. The data analyzed in this study is a secondary data pro-
duced by [2], namely data on normal cell protective compounds on radioprotector. The
dataset comprises of 84 compounds and 217 compound components (hereafter we called
as features). There are two classes of toxicity level, i.e., low and high toxicity calculated
based on death rate cells. The classification is based on cell death rates where class 0 in-
dicates toxicity with cell death rates less than 20% and class 1 for toxicity with cell death
rates of above 20%. Table 1 below listed the variables as well as the features involved in
the analysis.

TABLE 1. Variables and features

Variable Name of feature
Class target
Response (Y) Y(0) = Toxicity with normal cell death rate 20-100%
Y (1) = Toxicity with normal cell death rate < 20%

r1 = pKa

z9 = Br_Count
r3 = C_Count
x4 = Cl_.Count

Predictor (x;)

T914 = Molecular_3D_PolarSASA
T915 = Molecular_.3D_SASA

916 = Molecular_3D_SAVoL
T917 = Molecular_Volume

The analysis using LORENS involves the following steps: partitioning the predictors
(features) into some subspaces, determination of the threshold as well as number of en-
semble. In this case, two different thresholds will be examined, i.e., optimal threshold
and fixed threshold 0.5. Furthermore, the probability of each compound with its corre-
sponding predictors is calculated from the logistic regression model in order to assign the
compound into the response class. Finally, majority voting is applied to determining the
class. Different with LORENS which uses all dataset in the classification, AdaBoost SVM
requires feature selection prior to the analysis. The important features are selected with
Mean Decreasing Gini (MDG) Index. The AdaBoost-SVM will be run with four different
proportion of most important features, i.e., top 5%, 10%, 25% and 35% important fea-
tures. The AdaBoost-SVM requires searching Cost (C) and Gamma parameters that led
to optimal accuracy. Grid search procedure will be applied to finding the optimal range
of those two parameters, and then the accuracy can be calculated.

3. Results and Discussion. This study discusses the results of compound classifica-
tion used to determine the compounds that are good for protecting normal cells on the
radioprotector based on the level of toxicity. The classification is done by using LORENS
and Ensemble SVM.

3.1. Classification using LORENS. LORENS is a computational approach to solve
classification problems. In order to get the best classification results, LORENS is run
several times with a number of different partitions. In this case, we set 5, 7, 10, 12,
15, 17, 20, 22, 25, 30, 40, and 50 partitions. LORENS uses an optimal threshold as
the basis of classification. This research compares the performance of LORENS using
optimal threshold and pre-determined threshold 0.5. The number of commonly used
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ensemble is 10; however, this study uses 11 ensembles in order to avoid confusion due to
the vote equality during the majority voting. In the analysis using LORENS, 10-folds
cross validation is used, which means that the data will be divided into 10 parts (folds)
with the same number. Each part will be treated as testing data and training data. It is
started with using the data in the 1st fold as testing data, while the 2nd to 10th folds are
used as training data. Furthermore, data in the second fold is used as testing data and
the rest of the fold is used as training data, and so forth until the 10th fold. There are
27830 logistic regression models formed under the setting of 11 ensembles, 10 folds and
12 partitions.

The first step in carrying out LORENS analysis is to divide the data into several
subspaces or partitions. Each subspace contains predictors with a fair amount. This
study has 217 predictors that will be randomly assigned into subspace depending on the
number of partitions. As the result, each subspace will have different logistic regression
model with its corresponding probability. If the probability is greater than 0.5, then
compound is classified into class 1. If the probability is less than 0.5, then the compound
is assigned to class 0. Table 2 below presents the accuracy of LORENS obtained with
optimal and 0.5 thresholds for different number of partitions. In fact, the values of optimal
threshold for all folds are very close to 0.5. Therefore, we can expect that the performance
between both threshold settings will not be significantly different.

TABLE 2. Accuracy of LORENS

. Accuracy (% Accuracy (%
Number of partitions ¢ ;) thre(shlld Fixed threshc()ld)0.5

) 55.9524 59.5238
7 58.3333 60.7143
10 58.3333 61.9048
12 55.9524 64.2857
15 54.7619 58.3333
17 57.1429 59.5238
20 60.7143 65.4762
22 63.0952 65.4762
25 64.2857 61.9048
30 69.0476* 69.0476*
40 65.4762 67.8571
50 67.8571 66.6667

The table shows that using 30 partitions leads to optimum classification results both
for 0.5 and optimum threshold. The accuracy is about 69.0476%. We see also that the
accuracy is not linearly correlated with the number of partitions. The performance of
classification using both thresholds is very similar, as expected.

3.2. AdaBoost-SVM. This subsection discusses the results of applying AdaBoost-SVM
to classifying the compound for toxicity. The method is not designed for the case of high
dimensionality. Therefore, the features need to be selected to make it feasible to apply
the AdaBoost-SVM. The feature will be selected based on its importance using Mean
Decreasing Gini (MDG) method. The result of the feature selection is the ranking of
each feature where the higher the MDG value, the more important the feature is. The
parameters used to calculate MDG from random forest are mtry (number of selected
features) and ntree (number of trees formed). Both parameters are combined to search
for the maximum accuracy. The analysis shows that the optimal accuracy is 0.6749
obtained from the combination of 5 mtry and 800 ntree. By using these parameters, the
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FIGURE 1. MDG values for each feature

MDG calculation is then performed to determine the importance of each variable. The
results of the MDG calculations are shown in Figure 1.

We see that the highest MDG is 0.3075 obtained for X197. This shows that based
on the MDG method, the most influential variable in determining classification is X197
(Energy), followed by X176 (Jurs-PNSA), X125 (CHI-3-C), etc. The Adaboost-SVM will
be applied to the 5%, 10%, 25%, and 35% most importance features, resulting on 11, 22,
55 and 76 number of features respectively. The AdaBoost-SVM classification is carried
out by specifying the parameters on a single SVM classification model, i.e.; using RBF
kernel, C, and Gamma.

The optimum C and Gamma values are searched using a search grid within the range
10~ to 10%. Using 10-fold cross validation, the analysis is carried out using four different
iterations, i.e., 5, 10, 15, and 20 iterations. Table 3 summarizes the grid search result from
the classification using the AdaBoost-SVM method on different numbers of important
features.

TABLE 3. Grid search of SVM

Average of total accuracy
5% 10%  25%  35%
1074 —10° 0.5508 0.5453 0.5442 0.5364
101 —10*  0.5122 0.5028 0.5028 0.509
1074 - 10° 0.6783 0.6969 0.6652 0.6378
101 — 10*  0.5217 0.5156 0.484 0.4922

C Gamma

1074 - 1071

10° — 10*

Based on the values in Table 3, the optimal C and Gamma parameters are obtained
within range C of 10° — 10* and range Gamma of 1074 — 10°, with the accuracy above
0.6. Furthermore, the AdaBoost-SVM classification is performed with parameters within
those ranges as can be seen in Table 4 showing the result of analysis using 5% important
features.

The highest total accuracy is 0.7889 obtained with C = 1 and Gamma = 0.1 with 10
iterations. The highest total accuracy for the other cases are 0.7861, 0.7847, and 0.75 for
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TABLE 4. Total accuracy for the corresponding C and Gamma using 5%
important features

SVM parameters

Number of iterations Total accuracy

C Gamma

1 0.1 5 0.7514

1 0.1 10 0.7889

10 0.01 15 0.7639
1000 0.001 20 0.7389

10%, 25% and 35% important features respectively. However, these values are obtained
under different combinations of Cost, Gamma and iteration.

3.3. Discussion. This subsection discusses the comparison of the classification accuracy
obtained from LORENS and AdaBoost-SVM. LORENS was developed based on the idea
of using all features to generate the class of the response during the classification, although
the algorithm involves feature partition. Meanwhile, AdaBoost-SVM uses selected fea-
tures for the classification. From the empirical reason point of view, both classification
approaches have their potential benefit. LORENS uses all information in the feature
with the following consideration. The drug discovery process is a complicated work and
needs a very high cost. Choosing only several important features means neglecting the
information within the unselected features which might be useful, as the common idea of
ensemble approaches. Meanwhile, AdaBoost-SVM uses only selected (most important)
features considering the fact that it saves the computational time especially if the data di-
mension is very high. Table 5 summarizes the comparison of classification using LORENS
and AdaBoost-SVM for the toxicity case. Again, the AdaBoost-SVM was run with four
different percentages of selected features, i.e., 5%, 10%, 25%, and 35%.

TABLE 5. Comparion of classification accuracy obtained with LORENS
and AdaBoost-SVM

Percentage Accuracy Parameters of AdaBoost-SVM

Method features (%) (%) C Gamma Iteration
LORENS 100% X S — -
5% 07820 1 01 10
10% 0.781 10  0.001 15
AdaBoost-SVM 5.0/ 0.7847 10 0.001 10
35% 0.7500 100  0.0001 15

Based on the table, we see that the AdaBoost-SVM outperforms LORENS by improv-
ing the accuracy about 9%, achieved by using 5% of the most important features with
parameters Cost = 1, Gamma = 0.1 and 10 iterations. It is worth noting that this result
does not necessarily mean that AdaBoost-SVM will always outperform LORENS as it is
case dependent.

4. Conclusions. The analysis showed that the high dimensionality in toxicity data is
better classified with AdaBoost-SVM. The accuracy reached 78% which is significantly
higher than the classification using LORENS. This result is obtained by examining only
5% important features. The AdaBoost-SVM improves the accuracy obtained by other
machine learning methods such as Random Forest and single SVM which reached about
71.6% accuracy, as shown in [4]. It suggests that the ensemble based machine learning
methods can be used as a promising alternative to classify compounds dealing with toxic-
ity. The selected features that are important for the toxicity case obtained from MDG are



ICIC EXPRESS LETTERS, VOL.13, NO.8, 2019 703

similar with those obtained with Gini Index, where X197 (Energy) is the most important
feature. The present study found that the ensemble based machine learning approach
works well to optimize the toxicity in the cancer drug discovery case. Nevertheless, the
experiment was intended to optimize not only the toxicity, but also the radiotheraphy.
Therefore, research on improving the ensemble based machine learning for bivariate case
can be a promising future research agenda.
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