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Abstract. This paper aims to show the relationship between compensators which can
stabilize a plant in two-stage compensator systems. It is possible to design two-stage
compensator systems which are guaranteed to be stable when one of the controllers is
broken, and there is changed characteristic of the system depending on input charac-
teristics. Previous works have shown the necessary and sufficient conditions for stable
two-stage compensator systems but did not give all stabilizing controllers for the systems.
In this paper, we examine the relationship between controllers which can simultaneously
stabilize the plant.
Keywords: Two-stage compensator systems, Closed-loop systems, Input characteris-
tics, Parameterization

1. Introduction. Using two-stage compensator systems has some advantages, compared
with the other multiple-stage compensator systems. For example, we can achieve decou-
pling and sensitivity minimization with lower cost, compactness, efficiency and so on.
From these advantages, two-stage compensator systems are practically used for such as
DC-DC converters. Zhu and Lehman discussed the control design of two-stage compen-
sator systems for high voltage input, low voltage/large current output applications and
presented multi-loop control designs for two-stage converters [1]. By using two-stage
topology, Khajehoddin et al. proposed a new method to analyze and design bus volt-
age controller which optimizes both transient response and steady-state harmonics while
allowing the reduction of the bus energy storage component size [2]. And they achieved re-
duction of about 80% of bus capacitor without lowering efficiency. In this paper, we exam-
ine the relation between simultaneously stabilizing controllers which can stabilize a plant
in two-stage compensator systems. When compensators stabilize a plant in two-stage
compensator systems, it is possible to design redundantly stable two-stage compensator
systems which stay stable even when one of the controllers is broken, and there are changed
characteristics of the system depending on input characteristics. Typically, the two-stage
compensator systems consist of a conservative controller and an aggressive controller. The
conservative controller lowers the sensitivity against input characteristics. On the other
hand, the aggressive controller is effective in stabilizing systems against high-frequency
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input. In addition, the two-stage compensator system considered in this paper has a
switch which changes the characteristic of the system, in the outer-loop. The problem of
designing two-stage compensator systems is to select an appropriate controller which can
stabilize an original plant. Given a plant, the first stage designs a stabilizing controller
for the original plant. The second stage designs a stabilizing controller for the inner-loop
system. Vidyasagar solved this problem in a two-stage compensator system by the factor-
ization approach [3]. Mori also solved the problem by the factorization approach [4, 5, 6].
They gave the necessary and sufficient conditions for stable two-stage compensator sys-
tems. However, they did not explain all stabilizing controllers for two-stage compensator
systems. There exist many papers considering the parameterization problem. At first, Yu
and Yan proposed the parameterization of all simultaneously stabilizing controllers for
two time-varying linear systems in discrete time [7]. Glaŕıa and Goodwin proposed the
parameterization for the class of all stabilizing controllers for linear minimum phase plants
[8]. Chang and Yousuff proposed the parameterization of observer-based controllers [9].
Hencey and Alleyne gave the parameterization of robust controllers for linear time-varying
systems [10]. The parameterization of all strongly stabilizable plants was introduced by
Hoshikawa et al. [11]. They proposed the parameterization of strongly stabilizable plants
which can be stabilized by a stable controller. Satoh and Yamada clarified the param-
eterization of all robust stabilizing repetitive controllers for single-input/single-output
continuous time non-minimum phase systems [12]. The parameterization for the class of
all proper internally stabilizing controllers for multiple-input/multiple-output minimum
phase systems was given by Yamada et al. [13]. Sakanushi et al. expanded this idea
and clarified the parameterization of all robust stabilizing simple repetitive controllers
for multiple-input/multiple-output plants [14]. Li et al. clarified the parameterization of
all simultaneous stabilizing controllers with robust servo characteristic for the step signal
[15]. Zhang et al. proposed the parameterization of controllers for single-input/single-
output and multiple-input/multiple-output plants with time delay [16]. Mori proposed
parameterization of all strictly causal stabilizing controllers and stabilizing controllers
over commutative rings with application to multidimensional systems [17, 18]. Howev-
er, to the best of our knowledge, the parameterization of all stabilizing controllers for
two-stage compensator systems has not been presented.
In this paper, we clarify the relation between simultaneously stabilizing controllers in

two-stage compensator systems. In other words, we parameterize all stabilizing controllers
for two-stage compensator systems. This paper is organized as follows. In Section 2, we
show the problem statement. In Section 3, we describe the relation between simultane-
ously stabilizing controllers. Section 4 gives conclusions.

2. Problem Statement. Consider the control system in Figure 1, where G(s) ∈ R(s) is
the plant, and C1(s) ∈ R(s) and C2(s) ∈ R(s) are the controllers. Here R(s) denotes the
set of real rational functions with s. We call the controller C1(s) conservative controller
and it is assumed to be stable. And we call the other controller C2(s) aggressive controller
and it is not necessarily stable. When we design controllers C1(s) and C2(s), C1(s) is
settled, and then the class of C2(s) is determined. Both C1(s) and C2(s) need to make
the control system in Figure 1 stable. If the relation between C1(s) and C2(s) is clarified,
there is a possibility to make C1(s) and C2(s). However, no paper examines the relation
between C1(s) and C2(s).
The problem considered in this paper is to clarify the relation between controllers C1(s)

and C2(s).

3. Main Results. In this section, we firstly give the existence of a stable compensator
system with controllers which simultaneously stabilize the plant. Then, we will provide
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Figure 1. Block diagram of two-stage compensator systems

the class of simultaneously stabilizing controllers C1(s) and C2(s), that is, the parameter-
ization of all simultaneously stabilizing controllers is shown. The class of simultaneously
stabilizing controllers is clarified in the following theorems.

Theorem 3.1. Both controllers, C1(s) and C2(s) simultaneously stabilize a plant G(s) if
and only if C2(s)− C1(s) stabilizes

Ĝ(s) =
G(s)

1 + C1(s)G(s)
∈ RH∞. (1)

Here RH∞ denotes the set of stable proper real rational functions.

Proof: First, the necessity is shown. That is, we show that if C1(s) and C2(s) si-

multaneously stabilize a plant G(s), then C2(s) − C1(s) stabilizes Ĝ(s) in (1). From
the assumption that C1(s) and C2(s) stabilize G(s), thus, transfer functions, 1/(1 +
C1(s)G(s)), C1(s)/(1 + C1(s)G(s)), G(s)/(1 + C1(s)G(s)), C1(s)G(s)/(1 + C1(s)G(s)),
1/(1 + C2(s)G(s)), C2(s)/(1 + C2(s)G(s)), G(s)/(1 + C2(s)G(s)) and C2(s)G(s)/(1 +
G(s)C2(s)) are stable.

From simple manipulation and (1), we have

1

1 + (C2(s)− C1(s)) Ĝ(s)
=

1 +G(s)C1(s)

1 +G(s)C2(s)
, (2)

Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
=

G(s)

1 + C2(s)G(s)
, (3)

C2(s)− C1(s)

1 + (C2(s)− C1(s)) Ĝ(s)
=

(1 + C1(s)G(s))C2(s)

1 + C2(s)G(s)
− (1 + C1(s)G(s))C1(s)

1 + C2(s)G(s)
, (4)

and

(C2(S)− C1(S)) Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
=

C2(s)G(s)

1 + C2(s)G(s)
− C1(s)G(s)

1 + C2(s)G(s)
. (5)

From the assumption that 1/(1+C2(s)G(s)), C2(s)/(1+C2(s)G(s)), G(s)/(1+C2(s)G(s))
and C1(s) are stable, transfer functions in (2), (3), (4) and (5) are stable. In addition,

G(s)/(1 + C1(s)G(s)) ∈ RH∞ gives us Ĝ(s) in (1). Thus, the necessity has been shown.

Next, the sufficiency is shown. That is, we show that if C2(s) − C1(s) stabilizes Ĝ(s)
in (1), then C1(s) and C2(s) stabilize G(s). From the assumption that we assume that

C2(s) − C1(s) stabilizes Ĝ(s) in (1), 1
/(

1 + (C2(s) − C1(s))Ĝ(s)
)

∈ RH∞, (C2(s) −

C1(s))
/(

1 + (C2(s) − C1(s))Ĝ(s)
)
∈ RH∞, Ĝ(s)

/(
1 + (C2(s) − C1(s))Ĝ(s)

)
∈ RH∞,(

(C2(s)− C1(s))Ĝ(s)
)/(

1 + (C2(s)− C1(s))Ĝ(s)
)
∈ RH∞ hold.
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Equation (1) gives

G(s) =
Ĝ(s)

1− C1(s)Ĝ(s)
. (6)

From this equation and simple manipulation, we have

1

1 + C1(s)G(s)
= 1− C1(s)Ĝ(s), (7)

G(s)

1 + C1(s)G(s)
= Ĝ(s), (8)

C1(s)

1 + C1(s)G(s)
= C1(s)

(
1− C1(s)Ĝ(s)

)
, (9)

C1(s)G(s)

1 + C1(s)G(s)
= C1(s)Ĝ, (10)

1

1 + C2(s)G(s)
=

1− C1(s)Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
, (11)

G(s)

1 + C2(s)G(s)
=

Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
, (12)

C2(s)

1 + C2(s)G(s)
=

C2(s)
(
1− C1(s)Ĝ(s)

)
1 + (C2(s)− C1(s)) Ĝ(s)

, (13)

and

C2(s)G(s)

1 + C2(s)G(s)
=

C2(s)Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
. (14)

Since C1(s) ∈ RH∞, Ĝ(s) ∈ RH∞ and the assumption that C2(s)−C1(s) stabilizes Ĝ(s),
all transfer functions in (7) ∼ (14) are stable. From the above, the sufficiency has been
shown.
We have thus proved Theorem 3.1. �
Next, we will present the main results.

Theorem 3.2. C1(s) and C2(s) simultaneously stabilize a plant G(s) if and only if C2(s)−
C1(s) is written by the form in

C2(s)− C1(s) =
Q1(s)

1−Q1(s)Q2(s)
, (15)

where Q1(s) ∈ RH∞ and Q2(s) ∈ RH∞ are any functions.

Proof: First, the necessity is shown. That is, we show that if C1(s) and C2(s) simul-
taneously stabilize G(s), then C2(s) − C1(s) takes the form in (15). From Theorem 3.1,

this is equivalent to that if C2(s)− C1(s) stabilizes Ĝ(s) in (1), then C2(s)− C1(s) takes

the form in (15). From the assumption that C2(s)−C1(s) stabilizes Ĝ(s) in (1), all of the

transfer functions, 1
/(

1+(C2(s)−C1(s))Ĝ(s)
)
, Ĝ(s)

/(
1+(C2(s)−C1(s))Ĝ

)
, (C2(s)−

C1(s))
/(

1 + (C2(s)−C1(s))Ĝ(s)
)
and (C2(s)−C1(s))Ĝ(s)

/(
1 + (C2(s)−C1(s))Ĝ(s)

)
belong to RH∞.

Therefore, using Q1(s) ∈ RH∞, (C2(s) − C1(s))
/(

1 + (C2(s) − C1(s))Ĝ(s)
)

can be

rewritten as
C2(s)− C1(s)

1 + (C2(s)− C1(s)) Ĝ(s)
= Q1(s). (16)
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From simple manipulation, we have

C2(s)− C1(s) =
Q1(s)

1−Q1(s)Ĝ(s)
. (17)

Since Ĝ(s) is stable, using Q2(s) ∈ RH∞ and let Ĝ(s) = Q2(s), (16) is rewritten as

C2(s)− C1(s) =
Q1(s)

1−Q1(s)Q2(s)
. (18)

Thus, the necessity has been shown.
Next, the sufficiency is shown. That is, if C2(s) − C1(s) takes the form in (15), then

C2(s)− C1(s) makes Ĝ(s) stable. When we set Ĝ(s) as

Ĝ(s) = Q2(s), (19)

then Ĝ(s) ∈ RH∞ because of Q2(s) ∈ RH∞. Then transfer functions, 1
/(

1 + (C2(s)

−C1(s))Ĝ(s)
)
, Ĝ(s)

/(
1+(C2(s)−C1(s))Ĝ

)
, (C2(s)−C1(s))

/(
1+(C2(s)−C1(s))Ĝ(s)

)
and (C2(s)− C1(s))Ĝ(s)

/(
1 + (C2(s)− C1(s))Ĝ(s)

)
are rewritten as

1

1 + (C2(s)− C1(s)) Ĝ(s)
= 1−Q1(s)Q2(s), (20)

C2(s)− C1(s)

1 + (C2(s)− C1(s)) Ĝ(s)
= Q1(s), (21)

Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
= (1−Q1(s)Q2(s))Q2(s), (22)

(C2(s)− C1(s)) Ĝ(s)

1 + (C2(s)− C1(s)) Ĝ(s)
= Q1(s)Q2(s). (23)

Since Q1(s) ∈ RH∞ and Q2(s) ∈ RH∞, (20), (21), (22) and (23) are stable. Thus, the
sufficiency has been shown.

Therefore, we have proved Theorem 3.2. �

4. Conclusions. In this paper, we describe the relationship between simultaneously sta-
bilizing controllers of two-stage compensator systems. A pair of simultaneously stabilizing
controller C1(s) and C2(s) has a relationship satisfying (15). Numerical examples and an
application of the results will be reported in the subsequent article.
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