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Abstract. This paper deals with the H∞ boundary control for stochastic delay Markov-
ian reaction-diffusion systems (SDMRDSs). First, boundary controllers are designed to
get mean square H∞ performance. By constructing of an integral Lyapunov-Krasovskii
functional and utilizing of Poincaré inequality, a sufficient condition of mean square H∞
performance for SDMRDSs is established. The effects of transition rates and diffusion
item on mean square H∞ performance are shown through the derived sufficient condi-
tion. Finally, a numerical example is presented to demonstrate the effectiveness of the
theoretical result.
Keywords: Stochastic delay reaction-diffusion systems, Markovian switching, Bound-
ary control, Mean square H∞ performance

1. Introduction. In the past few decades, stochastic reaction-diffusion systems have
attracted considerable attention. Many phenomena in nature, such as the fur pattern of
animals, chemical reactions, and neural networks can be described by stochastic reaction-
diffusion systems [1, 2]. Additionally, time delays usually occur in a variety of engineering
systems and biological process, and often result in instability and poor performance. For
example, Woolley et al. [3] have shown that a small delay in the reactions can make
structure change for raction-diffusion patterning systems. For more prior work on time
delay systems, we refer to the reader [4, 5, 6] and the references therein.

When sudden failure, environmental change and components repair occur, Markovian
jump systems [7] are suitable mathematical models to represent systems with these abrupt.
Zhang et al. have systematically investigated stability problem of Markovian jump linear
systems, and refined many results concerned with partly unknown transition probabilities
and time-varying delays [8, 9, 10]. However, they did not consider the environment
noise. Mao et al. [11] have studied stochastic differential delay equations with Markovian
switching by using M-matrix method, but have not taken reaction-diffusion item into
account.

In recent years, stability of stochastic reaction-diffusion systems has become a focus of
research in both theoretical and practical areas, for instance, asymptotical stability [12],
exponential stability [13], and finite-time stability [14]. However, many natural phenom-
ena often affected by random effects such as the noise and environment disturbance, and
inevitable external disturbance may degrade the performance of the system to a large ex-
tent. H∞ performance is a good indicator to reflect external interference. Therefore, some
burgeoning results about H∞ performance for disturbed systems have been available so
far [15, 16, 17, 18]. In [17, 18], Shi et al. did some research on H∞ control for Markovian
jump systems with parametric uncertainty and delay. Very recently, Li et al. [16] have
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investigated H∞ control of continuous Markov jump systems with incomplete transition
probabilities and interval time-varying delay.
Diffusion is a usual phenomenon and H∞ control for reaction-diffusion systems is an

interesting topic. However, there are very few works dealing with this problem. Several
researchers [19, 20, 21] have only studied the H∞ synchronization for reaction diffusion
systems. From cost viewpoint, boundary control is an effective strategy to deal with
reaction-diffusion systems [22, 23, 24]. For reaction-diffusion systems with Markovian
switching, there is little literature to study this topic. Although we have studied H∞
boundary control of reaction-diffusion systems [25, 26], stochastic Markovian reaction-
diffusion systems have not been fully investigated yet. Therefore, the problem of H∞
boundary control for stochastic delay reaction-diffusion systems with Markovian switching
has attracted our attention.
Motivated by the above discussion, in this paper, we investigate the H∞ boundary

control for stochastic delay reaction-diffusion systems with Markovian switching (SDM-
RDSs). Boundary controllers are designed at first, and we derive a sufficient criterion
on H∞ boundary control for SDMRDSs by Lyapunov functional method and inequality
techniques. The relationship between Markov process and mean square H∞ performance
of SDMRDSs is shown through our obtained criterion. The effect of diffusion item is also
presented. At last, an example is employed to illustrate the effectiveness of the obtained
result.
Throughout this paper, the following mathematical notations are used. Rn is the n-

dimensional Euclidean space. Rn×m is the set of all n × m real matrices. In stands for
the n-dimensional identity matrix. A−1 and AT denote the inverse and transposition
of matrix A, respectively. ∥·∥ denotes the Euclidean norm for vector. Moreover, let
W l,2([0, 1];Rn) be a Sobolev space of absolutely continuous n-dimensional vector functions

ω(x) : [0, 1] → Rn with square integrable derivatives dlω(x)
dxl of the order l ≥ 1.

2. Problem Statement and Preliminaries. In this paper, we consider a class of sto-
chastic delay Markovian reaction-diffusion systems

dy(x, t) =

[
f(r(t), y(x, t− τ)) +D(r(t))

∂2y(x, t)

∂x2
+ v(x, t)

]
dt

+ g(r(t), y(x, t), y(x, t− τ))dB(t), x ∈ (0, 1), t > 0,

(1)

where f : S×Rn → Rn and g : S×Rn×Rn → Rn×m, and x, t are the spatial variable and
time variable, respectively. y(x, t) = (y1(x, t), y2(x, t), . . . , yn(x, t))

T ∈ Rn is the system
state. τ > 0 is the time delay. D(r(t)) represents the positive definite diffusion-matrix in
mode r(t). B(t) is anm-dimensional Brownian motion. v(x, t) is the external disturbance,
which is square integrable, i.e.,∫ tf

0

∫ 1

0

vT(x, t)v(x, t)dxdt < ∞,

for a positive time constant tf .
Let {r(t), t ≥ 0} be a right-continuous Markov process on the complete probability

space (Ω,F , P ) taking values in a finite state space S = {1, 2, . . . , N} with a generator
Γ = (pij)N×N , (i, j ∈ S) given by

P{r(t+∆t) = j|r(t) = i} =

{
pij∆t+ o(∆t), i ̸= j,
1 + pii∆t+ o(∆t), i = j,

(2)

where ∆t > 0, lim∆t→0(o(∆t)/∆t) = 0, here pij ≥ 0 (∀i ̸= j) is the transition rate from
mode i to mode j if i ̸= j, while pii = −

∑
i ̸=j pij < 0.

In mode r(t) = i, we shall simply write f(r(t), y(x, t−τ)) = fi(y(x, t−τ)), D(r(t)) = Di

and g(r(t), y(x, t), y(x, t − τ)) = gi(y(x, t), y(x, t − τ)). Therefore, the system (1) can be
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rewritten as follows

dy(x, t) =

[
fi(y(x, t− τ)) +Di

∂2y(x, t)

∂x2
+ v(x, t)

]
dt

+ gi(y(x, t), y(x, t− τ))dB(t), x ∈ (0, 1), t > 0.

(3)

The initial values are given as follows

y(x, s) = 0, s ∈ [−τ, 0] , (4)

and the Neumann boundary conditions are imposed

∂y(x, t)

∂x

∣∣∣∣
x=0

= 0,
∂y(x, t)

∂x

∣∣∣∣
x=1

= ui(t), (5)

where ui(t) is the boundary control input.
The following definition, assumption and lemmas are necessary for our theoretical anal-

ysis.

Definition 2.1. System (3) achieves finite horizon H∞ performance in the mean square
if for a given positive time constant 0 < tf < ∞ and a disturbance attenuation level γ > 0,
when y(x, t) = 0, t ∈ [−τ, 0], the following inequality holds

E
(∫ tf

0

∫ 1

0

yTydxdt

)
≤ γ2E

(∫ tf

0

∫ 1

0

vTvdxdt

)
.

Assumption 2.1. The functions fi and gi satisfy the following conditions. That is, there
exists L > 0 such that

∥fi(x1)− f
i
(x2)∥2 ≤ L∥x1 − x2∥2 (6)

for all x1, x2 ∈ Rn and fi(0) = 0; and there are, moreover, L1 > 0 and L2 > 0 such that

trace
(
gi(u, v)

Tgi(u, v)
)
≤ L1u

Tu+ L2v
Tv, ∀u, v ∈ Rn. (7)

Lemma 2.1. (Poincaré inequality [24]) Let z ∈ W 1,2([0, 1];Rn) be a vector function with
z(0) = 0 or z(1) = 0. Then, for a positive matrix R, one has the following integral
inequality ∫ 1

0

zT(s)Rz(s)ds ≤ 4

π2

∫ 1

0

(
dz(s)

ds

)T

R

(
dz(s)

ds

)
ds. (8)

Lemma 2.2. ([27]) For any vector x, y ∈ Rn and one positive definite matrix Q > 0, the
following inequality holds

2xTy ≤ xTQ−1x+ yTQy. (9)

3. Main Results. In this section, we present an H∞ boundary control criterion by
Lyapunov functional method and Poincaré inequality.

First of all, boundary controllers for system (3) are designed as follows

ui(t) = Ki

∫ 1

0

y(x, t)dx, (10)

where Ki ∈ Rn×n denotes the control gain.
For convenience, we suppress (x, t) and denote y(x, t) and y(x, t− τ) by y and yτ when

it does not cause confusion.
Now, we are on the point to give the main result.

Theorem 3.1. There exist ε > 0, qi > 0, if matrices Ki, 1 ≤ i ≤ N such that the
following matrices

Ψ(i) =

(
Mi + qi

(
DiKi +KT

i Di

)
+ qiK

T
i DiKi 0

0 (ε−1Lqi + qiL2 − 1) In

)
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are negative semi-definite, where Mi =
(
1 + qi + qiε+ qiγ

−2 + qiL1 +
∑

j∈S pijqj

)
In, then

system (3) can achieve finite horizon H∞ performance in the mean square.

Proof: Consider the following integral Lyapunov-Krasovskii functional

V (y(·, t), i) =
∫ 1

0

qiy
Tydx+

∫ 1

0

∫ t

t−τ

yT(x, s)y(x, s)dsdx.

Using the generalized Itô formula (see [28]) and computing dV along system (3), we
can obtain

dV (y(·, t), i) =
∫ 1

0

[
yTy − yTτ yτ + 2qiy

T

(
fi(yτ ) +Di

∂2y

∂x2
+ v

)
+ trace

[
gTi (y, yτ ) Inqigi (y, yτ )

]
+
∑
j∈S

pij

(
qjy

Ty +

∫ t

t−τ

yT (x, s) y (x, s) ds

)]
dxdt

+

∫ 1

0

2qiy
Tgi (y, yτ ) dxdB(t).

(11)

For the given constants γ and tf , we have V (y(·, 0), i) = 0 when y(x, t) = 0, t ∈ [−τ, 0],
then

E
∫ tf

0

∫ 1

0

qi
(
yTy − γ2vTv

)
dxdt

= E
∫ tf

0

∫ 1

0

qi
(
yTy − γ2vTv

)
dxdt+ E

∫ tf

0

dV + EV (y(·, 0), i)− EV (y(·, tf ), i)

≤ E
∫ tf

0

∫ 1

0

qi
(
yTy − γ2vTv

)
dxdt+ E

∫ tf

0

∫ 1

0

[
yTy − yTτ yτ + 2qiy

Tfi(yτ )

+ 2qiy
TDi

∂2y

∂x2
+ 2qiy

Tv + trace
[
gTi (y, yτ ) Inqigi (y, yτ )

]
+
∑
j∈S

pijqjy
Ty

]
dxdt

= E
∫ tf

0

∫ 1

0

[
qi

[
−γ2

(
v − γ−2y

)T (
v − γ−2y

)]
+ qiy

Ty + qiγ
−2yTy + yTy

− yTτ yτ + 2qiy
Tfi(yτ ) + 2qiy

TDi
∂2y

∂x2
+ trace

[
gTi (y, yτ ) Inqigi (y, yτ )

]
+
∑
j∈S

pijqjy
Ty

]
dxdt

≤ E
∫ tf

0

∫ 1

0

[
qiy

Ty + qiγ
−2yTy + yTy − yTτ yτ + 2qiy

Tfi(yτ ) + 2qiy
TDi

∂2y

∂x2

+ trace
[
gTi (y, yτ ) Inqigi (y, yτ )

]
+
∑
j∈S

pijqjy
Ty

]
dxdt.

(12)

According to Assumption 2.1, there exists ε > 0 such that

2yTfi(yτ ) = yTfi(yτ ) + fT
i (yτ )y ≤ εyTy + ε−1fT

i (yτ )fi(yτ ) ≤ εyTy + ε−1LyTτ yτ . (13)

Integrating by parts and employing the boundary conditions (5), it yields∫ 1

0

yTDi
∂2y

∂x2
dx = yTDi

∂y

∂x

∣∣∣∣x=1

x=0

−
∫ 1

0

∂yT

∂x
Di

∂y

∂x
dx

=

∫ 1

0

yT(1, t)DiKiydx−
∫ 1

0

∂yT

∂x
Di

∂y

∂x
dx.
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Letting ȳ(x, t) = y(x, t)− y(1, t), we have ȳ(1, t) = y(1, t)− y(1, t) = 0 and

∂yT

∂x
Di

∂y

∂x
=

∂(y − y(1, t))T

∂x
Di

∂(y − y(1, t))

∂x
.

With Lemma 2.1, we get∫ 1

0

yTDi
∂2y

∂x2
dx ≤

∫ 1

0

yT(1, t)DiKiydx− 1

4
π2

∫ 1

0

ȳTDiȳdx. (14)

Combining (12), (13) and (14), we get

E
∫ tf

0

∫ 1

0

qi
(
yTy − γ2vTv

)
dxdt

≤ E
∫ tf

0

∫ 1

0

[
qiy

Ty + qiγ
−2yTy + yTy − yTτ yτ + εqiy

Ty + ε−1qiLy
T
τ yτ

+ 2qiy
T (1, t)DiKiy −

π2

2
qiȳ

TDiȳ + qiL1y
Ty + qiL2y

T
τ yτ +

∑
j∈S

pijqjy
Ty

]
dxdt

= E
∫ tf

0

∫ 1

0

[
qiy

Ty + qiγ
−2yTy + yTy − yTτ yτ + εqiy

Ty + ε−1qiLy
T
τ yτ

+ 2qi
(
yT − ȳT

)
DiKiy −

π2

2
qiȳ

TDiȳ + qiL1y
Ty + qiL2y

T
τ yτ +

∑
j∈S

pijqjy
Ty

]
dxdt

= E
∫ tf

0

∫ 1

0

[
yT

((
1 + qi + qiε+ qiγ

−2 + qiL1

)
In + 2qiDiKi

)
y

+ yTτ
(
ε−1qiL+ qiL2 − 1

)
Inyτ − 2qiȳ

TDiKiy −
π2

2
qiȳ

TDiȳ +
∑
j∈S

pijqjy
Ty

]
dxdt.

(15)

By virtue of Lemma 2.2, we get

−2qiȳ
TDiKiy ≤ qiȳ

TDiȳ + qiy
TKT

i DiKiy. (16)

Substituting (16) into (15) gives

E
∫ tf

0

∫ 1

0

qi
(
yTy − γ2vTv

)
dxdt

≤ E
∫ tf

0

∫ 1

0

[
yT

((
1 + qi + qiε+ qiγ

−2 + qiL1 +
∑
j∈S

pijqj

)
In + 2qiDiKi

+ qiK
T
i DiKi

)
y + yTτ

(
ε−1qiL+ qiL2 − 1

)
Inyτ + ȳT

(
qiDi −

π2

2
qiDi

)
ȳ

]
dxdt

≤ E
∫ tf

0

∫ 1

0

[
yT

(
Mi + 2qiDiKi + qiK

T
i DiKi

)
y

+ yTτ
(
ε−1qiL+ qiL2 − 1

)
Inyτ

]
dxdt

=
1

2
E
∫ tf

0

∫ 1

0

[
yT

(
2Mi + 2qiDiKi + 2qiK

T
i Di + 2qiK

T
i DiKi

)
y

+ 2yTτ
(
ε−1qiL+ qiL2 − 1

)
Inyτ

]
dxdt

= E
∫ tf

0

∫ 1

0

(
yT yTτ

)
Ψ(i)

(
y
yτ

)
dxdt ≤ 0.

(17)

Since qi > 0, we must have

E
∫ tf

0

∫ 1

0

(
yTy − γ2vTv

)
dxdt ≤ 0. (18)
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That is the desired result.

Remark 3.1. When system (3) reduces to a one-dimensional system, from the second
inequality in (17), it is calculated that the control gain Ki exists if qiDi ≥ Mi. More

precisely, the value range of Ki satisfies −1−
√
1− Mi

qiDi
≤ Ki ≤ −1 +

√
1− Mi

qiDi
. What

we should point out is that the Mi can be negative if we choose the appropriate value of pij.
The smaller Mi is, the wider the value range of Ki is. Besides, when Mi is negative, we
observe that the smaller the diffusion coefficient Di is, the wider the value of Ki is. Thus,
the transition rates and diffusion item do have an effect on mean square H∞ performance
for SDMRDSs.

4. Numerical Example. Let r(·) be a right-continuous Markov process taking values
in S = {1, 2} with generator

Γ = (pij)2×2 =

(
−2 2
1 −1

)
. (19)

Consider the one-dimensional stochastic delay reaction-diffusion system with Markovian
switching of the form

dy(x, t) =

[
Aiy(x, t− 0.1) +Di

∂2y(x, t)

∂x2
+ 0.14 cos(πt) + 0.1 sin(2x)

]
dt

+ [Ciy +Hiy(x, t− 0.1)]dB(t), x ∈ (0, 1), t > 0.

(20)

When r(t) = 1, we take A1 = 0.36, D1 = 10, C1 = −0.15, H1 = −0.65, that is

dy(x, t) =

[
0.36y(x, t− 0.1) + 10

∂2y(x, t)

∂x2
+ 0.14 cos(πt) + 0.1 sin(2x)

]
dt

− [0.15y + 0.65y(x, t− 0.1)]dB(t), x ∈ (0, 1), t > 0,

(21)

and when r(t) = 2, we take A2 = 0.31, D2 = 5, C2 = 0.17, H2 = −0.51, that is

dy(x, t) =

[
0.31y(x, t− 0.1) + 5

∂2y(x, t)

∂x2
+ 0.14 cos(πt) + 0.1 sin(2x)

]
dt

+ [0.17y − 0.51y(x, t− 0.1)]dB(t), x ∈ (0, 1), t > 0.

(22)

Take the zero initial value, i.e.,

y(x, t) = 0, t ∈ [−0.1, 0], x ∈ (0, 1). (23)

The boundary controllers for system (20) are designed as follows

u1(t) = u2(t) = −1

∫ 1

0

y(x, t)dx. (24)

By letting γ = 1, tf = 1, we take ϵ = 1, q1 = 0.65, q2 = 1. And we verify that all the
conditions stated in Theorem 3.1 have been satisfied. Thus, system (20) achieves finite
horizon H∞ performance in the mean square.
To show the effectiveness of our control design, numerical calculation gives

E
∫ 1

0

∫ 1

0
yTydxdt

E
∫ 1

0

∫ 1

0
vTvdxdt

= 0.59152 < 12 = γ2, (25)

which is in accordance with the theoretical result.
For comparison, we take control strategy out, i.e., K1 = K2 = 0, numerical calculation

gives

E
∫ 1

0

∫ 1

0
yTydxdt

E
∫ 1

0

∫ 1

0
vTvdxdt

= 1.18312 > 12 = γ2. (26)
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The above result indicates that mean square H∞ performance is not valid. Therefore, our
boundary control strategy is achieved.

5. Conclusions. In this paper, H∞ boundary control of stochastic reaction-diffusion
systems with Markovian switching and time delays has been investigated. First of all,
suitable boundary controllers have been constructed. Moreover, by choosing Lyapunov
functional and using Poincaré inequality, a sufficient condition ensuring mean square H∞
performance for stochastic delay reaction-diffusion systems with Markovian switching are
given under the given controllers. The effects of transition rate and diffusion item on mean
square H∞ performance are presented. Besides, a numerical simulation is performed to
substantiate the effectiveness of the obtained result and the rationality of controller design.
It should be pointed out that the effect of time delays is not significant due to the simple
form of auxiliary functional. We can further study the effect of time delays or time-varying
delays on stochastic reaction-diffusion systems with Markovian switching.
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