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Abstract. This paper mainly proposes a correntropy-based filtering algorithm for non-
Gaussian systems that are subject to random interference. When the system is subjected
to non-Gaussian interference noise, the filtering algorithm can accurately estimate the
state of the system, and then proposes a two-stage sensor fault diagnosis method based
on correntropy filters. When the sensor fails, the residual will be generated, differen-
t sub-filters are driven by different residual signals, and then input the estimated state
obtained by the sub-filter into the Probabilistic Neural Network (PNN), which can effec-
tively determine the sensor failure and achieve fault location. Finally, the two-level fault
diagnosis method designed in this paper is applied to the wind energy conversion system
with high wind speed and random noise, and the simulation results show that this method
can effectively achieve sensor fault diagnosis.
Keywords: Non-Gaussian system, Correntropy, Probabilistic neural network, Sensor
fault diagnosis

1. Introduction. With the development of fault-tolerant control and computer technol-
ogy, the control effect of the system has reached a high level of reliability, and the sensor
fault has become one of the major causes of system fault. Therefore, it is necessary to
study how to implement sensor fault diagnosis. The state of the system can directly reflect
the operating status of the system. Using the state estimation method combined with the
appropriate model can achieve sensor fault diagnosis. The Kalman Filter (KF) [1] algo-
rithm is one of the commonly used state estimation algorithms for linear systems, since
almost all actual systems contain nonlinearities, the Extended Kalman Filter algorithm
(EKF) [2] is often used to implement the state estimation. However, the noise in the
actual industrial process may not obey the Gaussian distribution. The traditional state
estimation method may not be able to obtain the ideal estimation result. Recently, [3]
proves the possibility of correntropy applied to the state estimation. Current sensor fault
detection methods mainly include hardware redundancy method, analytical redundancy
method, expert system method, and neural network method. [4] studies the method of
fault diagnosis of the sensor based on hardware redundancy. Although the result of fault
diagnosis is feasible, this method is difficult to implement due to its large number of
equipment, large space and high cost. In [5], the analytical redundancy method is ap-
plied to the fault detection, separation and identification of sensor faults, which improves
the performance of fault diagnosis methods. However, the analytical redundancy method
requires an accurate mathematical model, which is difficult to implement for complex sys-
tems. [6] applies expert system to fault diagnosis. It can find fault components quickly
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and accurately. However, the expert system method is difficult to acquire knowledge, and
it cannot diagnose new difficulties. While neural networks have many advantages because
they can effectively solve these problems and can identify the type of fault and the cause
of the fault. Therefore, it is one of the effective methods to realize the fault diagnosis.
In this paper, Probabilistic Neural Network (PNN) [7] is chosen to study sensor fault

diagnosis. PNN is based on Radical Basis Function (RBF) neural network, which combines
the density function estimation of Parzen window and Bayesian decision theory. The
structure is simple and the algorithm is easy to design. It is especially suitable for solving
classification problems, so sensor fault diagnosis can be realized. Then combine the PNN
with the correntropy filter to diagnose the sensor fault.
The rest of this paper is organized as follows. Section 2 designs filter models for non-

Gaussian system models. Section 3 proposes the use of correntropy as a performance
index to solve the optimal solution of the filter gain matrix. Section 4 designs a two-level
fault diagnosis method by using the correntropy filter proposed in the previous section
and the PNN network. Section 5 applies the two-level fault diagnosis method proposed
in the previous section to a wind energy conversion system and verifies its effectiveness.
Finally, some conclusions are drawn in Section 6.

2. System Model and Filter Design. The state space model for a non-Gaussian sys-
tem is presented as follows:{

ẋ(t) = A(t)x(t) +B(t)u(t) +Wω(t)

y(t) = C(t)x(t) + ζ(t)
(1)

where x ∈ Rn is system state vector, u ∈ Rr is system input and y ∈ Rm is system output.
ω ∈ Rn and ζ ∈ Rm are system noise and measurement noise that do not necessarily satisfy
Gaussian assumptions. Assuming that ω and ζ are both bounded and independent. A,
B, C, W are the system parameter matrices of the corresponding dimension.
For the system model described in (1), the following filter model can be established:{

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + L(y(t)− ŷ(t))

ŷ(t) = C(t)x̂(t)
(2)

where L ∈ Rn×m is the filter gain matrix to be solved.
Defining the estimation error as e(t) = x(t) − x̂(t), according to (1) and (2) we can

obtain:

ė(t) = ẋ(t)− ˙̂x(t) = A(t)e(t) + L(C(t)e(t) + ζ(t)) +Wω(t) (3)

Define the output error as:

ey(t) = y(t)− ŷ(t) = C(t)e(t) + ζ(t) (4)

The filter is designed to make the system state and estimated state as close as possible,
and this requires the solution of the optimal filter gain matrix L∗. The next section will
use correntropy as a performance index to solve it.

3. Correntropy Filter Design.

3.1. Performance. The filter optimal gain matrix L∗ can make the system state and
the filter estimation state as close as possible, that is to say the randomness of the system
is the smallest at this moment. Recently, in the case of non-Gaussian, the Maximum
Correntropy Criterion (MCC) has been successfully applied in the design of the filter.
The correntropy is the generalized similarity measure of two random variables. The

greater the correntropy between two sequences is, the more similar the two sequences are.
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Given the random variables X and Y , the correntropy is defined as:

V (X,Y ) = E[κ(X,Y )] =

∫
κ(x, y)dFXY (x, y) (5)

where E is the expectation, FXY (x, y) the joint probability distribution function of (X,Y )
and κ(x, y) a translation-invariant Mercer kernel. In general, Gaussian kernel function is
the most commonly used, which is presented as follows:

κ(x, y) = Gσ(e) =
1√
2πσ

exp

(
− e2

2σ2

)
(6)

where e = x− y, σ > 0 is kernel width.
In most cases, only limited data are available and the joint distribution function

FXY (x, y) is usually unknown, so the correntropy can be estimated from a finite num-
ber of samples, which can be obtained by:

V̂ (X,Y ) =
1

N

N∑
i=1

G(xi − yi) =
1

N

N∑
i=1

G(ei) (7)

where N is sample number.
This section selects correntropy as the performance index for filter design, the state

error vector dimension is n, so ek = [e1k e2k · · · enk ], for the j-th estimation error ejk (j =

1, 2, . . . , n), sample number is N , the sample of the estimated error is eeji (i = 1, 2, . . . , N),

then the correntropy of ejk can be expressed as:

Jj =
1

N

N∑
i=1

Gσ

(
eeji
)
=

1

N

N∑
i=1

1√
2πσ

exp

(
−
(
eeji
)2

2σ2

)
(8)

To simplify the calculation, this section uses the sum of the correntropy of each esti-
mation error as a performance indicator, which is:

J = J1 + J2 + · · ·+ Jj + · · ·+ Jn

=
n∑

j=1

(
1

N

N∑
i=1

Gσ

(
eeji
))

=
n∑

j=1

(
1

N

N∑
i=1

1√
2πσ

exp

(
−
(
eeji
)2

2σ2

))
(9)

3.2. Optimal filter gain solution. The greater the correntropy is, the more similar
the two sequences are, so the optimal filter gain can be obtained by maximizing the
correntropy. There are many methods to solve this problem. The gradient ascending
method is simple in form, but the convergence speed is slow. The convergence speed of
Newton’s method is faster due to its second-order convergence, so this section selects the
Newton method, and Theorem 3.1 gives the recursive formula for the optimal filter gain
by using the Newton method.

Theorem 3.1. For a given accuracy ε > 0, the approximate solution of the optimal gain
matrix of the maximum correntropy filter can be expressed as:

lk+1 = lk + λkPk (10)

where λk =
−∇J(lk)

TPk

pTk H(lk)Pk
, Pk = −H−1(lk)∇J(lk), and the Hessen matrix is:

H(lk) =

[
∂J(lk)

∂li∂lj

]
mn×mn

=


∂2J(lk)

∂l21
· · · ∂2J(lk)

∂l1∂lmn
...

. . .
...

∂2J(lk)

∂lmn∂l1
· · · ∂2J(lk)

∂l2mn
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The steps for solving L∗ using Newton’s method can be expressed as:

1) Step 1: Initialize l0, let k = 0, accuracy ε > 0;

2) Step 2: Calculate the gradient ∇J(lk) =
[
∂J(lk)
∂l1

∂J(lk)
∂l2

· · · ∂J(lk)
∂lmn

]T
, if the accuracy re-

quirement meets ∇J(lk) < ε, then stop the calculation and the approximate optimal
solution is lk, otherwise go to Step 3;

3) Step 3: Let Pk = −H−1(lk)∇J(lk), λk = −∇J(lk)
TPk

pTk H(lk)Pk
is approximate optimal step size,

H(lk) is the Hessen matrix, and lk+1 = lk + λkPk;
4) Step 4: Proceed to the next step, k = k+1, calculate the gradient ∇J(lk+1), and then

go to Step 2.

4. Sensor Fault Detection and Diagnosis. The common sensor faults in the control
system are mainly divided into three categories: constant deviation faults, constant gain
faults, and stuck faults. Assuming that only one sensor fails in the system, the system
model with sensor fault (1) can be obtained as follows:

ẋ(t) = A(t)x(t) +B(t)u(t) +W (h)ω(t)

yideal(t) = C(t)x(t)

yreal(t) = yideal(t) + fsyF (t) + ζ(t)

(11)

where yideal(t) is ideal output when the sensor is trouble-free and has no measurement
noise, yreal(t) actual output, fs = Ei = [0 . . . 1 . . . 0]T sensor fault vector, which indicates
that the i-th sensor has failed and yF (t) fault signal.
Assume that the i-th sensor in the system has gone wrong, yiideal(t) indicates the ideal

output of the i-th sensor, yireal(t) indicates the real output of the i-th sensor, and then
the three faults of the sensor can be expressed as:
1) Constant deviation fault

yireal(t) = yiideal(t) + ∆i + ζ(t) (12)

where ∆i is a constant.
2) Constant gain fault

yireal(t) = βiyiideal(t) + ζ(t) (13)

where βi is scale factor.
3) Stuck fault

yireal(t) = αi + ζ(t) (14)

where αi is a constant.
In this section, the main work is adopting the correntropy filter designed in the previ-

ous section to implement the sensor fault diagnosis. Figure 1 shows the two-level fault
diagnosis method designed in this paper.
The red dotted box in the upper part of Figure 1 shows the first level of fault detection,

where the correntropy filter is used to estimate the state variables of the system. When one
of the sensors in the system fails, the residual will be generated, which can be expressed
as follows:

E [ey(t)] ̸= 0 (15)

where ey(t) is residual error when the sensor goes wrong. In other words, when a sensor
goes wrong, the mean value of the system residuals is no longer zero. Therefore, the
following detection rules can be obtained:{

E [ey(t)] ̸= 0, When a fault occurs

E [ey(t)] = 0, When no fault occurs
(16)

The green dotted box at the bottom of Figure 1 shows the second-level fault location.
Different signals are used to drive each correntropy filter. Each filter can get n estimated
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Figure 1. Sensor fault diagnosis block diagram

Figure 2. Probabilistic neural network structure diagram

states. Using any state to construct the input vector and input it to the PNN can achieve
fault location.

The PNN is based on the RBF neural network, the Bayesian decision theory and the
density function estimation of the Parzen window. The PNN structure is simple, consist-
ing of the input layer, the mode layer, the summation layer, and the output layer. The
structure is shown in Figure 2.

The input layer passes the feature vector X = [x̃1, x̃2, . . . , x̃Q] to the PNN network, and
the number of neurons is equal to the dimension of X expressed by Q. The mode layer
can calculate the relationship between X and the fault mode categories in the training
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sample. The number of neurons is equal to the sum of the number of training samples.
The output of each model neuron can be obtained by:

f (X,Wi) = exp

(
−(X −Wi)

T (X −Wi)

2δ2

)
(17)

where Wi is weight, connecting the input layer to the pattern layer; δ smoothing factor,
is an important parameter used to adjust the PNN.
The summation layer accumulates the probabilities belonging to a certain pattern cat-

egory according to (17), the number of neurons is equal to the number of fault modes,
and the summation neurons are only connected with the pattern layer neurons belonging
to their own category. Each neuron in the output layer corresponds to a fault mode, so
the number of neurons is equal to the number of fault modes, and it accepts the output
of the summation layer and performs a simple discrimination. So the neuron with the
largest PDF value is output as 1, and other neurons are 0, so as to achieve fault location.
In summary, the two-level fault diagnosis method designed in this paper is summarized

as follows. First, collect the state estimation value of each correntropy filter, select the
feature vector and training sample as the input vector of the PNN. Second, initialize the
PNN, determine the relevant parameters of the PNN, and train the PNN with the given
training data. Third, input the test data into the trained PNN to test the validity of the
network.

5. Verification with Simulation. To illustrate the effectiveness of the two-stage fault
diagnosis method based on correntropy filters proposed in this paper, this section applies
the above method to the wind energy conversion system under high wind speed established
in [8] to implement sensor fault location. Assume that only one sensor goes wrong at a
time in the system, and all other sensors work normally. Model of wind energy conversion
system at high wind speed is shown in (11).
In this simulation, the sampling time is 1 second. The parameters of the wind energy

conversion system at high wind speeds can be obtained from [8].

5.1. Health system simulation. When the sensor works normally, the simulation re-
sults of the wind energy conversion system are shown in Figure 3 and Figure 4.

Figure 3. The change curve of performance index
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Figure 4. The change curve of state estimation error

It can be seen from Figure 3 that the filter based on correntropy can reach the optimal
performance index, the value of correntropy increases with time, and finally reaches a
maximum value, indicating that the randomness of the dynamic error of the filter can be
effectively minimized change. It can be seen from Figure 4 that when the wind energy
conversion system is operating in a normal state, the state estimation error by using the
correntropy filter is near zero. The fluctuation indicates that when the system is disturbed
by random wind speed and non-Gaussian measurement noise, a more satisfactory state
estimation result can be obtained by using a correntropy filter.

5.2. Fault system simulation. Next, we consider the fault of a sensor in wind energy
conversion system under high wind speed and use the two-level fault diagnosis method
designed in this paper to achieve fault diagnosis, taking account of the nine common types
of sensor faults, as shown in Table 1.

Table 1. The types of sensor faults

Fault name Fault description Fault number
F1 Wind wheel speed sensor constant deviation fault 1
F2 Wind wheel speed sensor constant gain fault 2
F3 Wind wheel speed sensor stuck fault 3
F4 Generator speed sensor constant deviation fault 4
F5 Generator speed sensor constant gain fault 5
F6 Generator speed sensor stuck fault 6
F7 Torsional angle sensor constant deviation fault 7
F8 Torsional angle sensor constant gain fault 8
F9 Torsional angle sensor stuck fault 9

Due to taking account of 9 types of faults, in order to fully reflect the operating condi-
tions of the system, we choose 9 eigenvalues as the input of the PNN, that is Q = 9.

In order to train the PNN, consider selecting 20 training samples for each fault, and a
total of 180 training samples. Normalize these training samples and input them into the
PNN to train the PNN.
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Figure 5. PNN network training results

Figure 6. PNN network test results

The training results are shown in Figure 5. It can be seen that the training accuracy
is 98.8889% (178/180). According to the figure, we can conclude that there is a certain
error between the actual fault type of the training sample and the PNN diagnosis fault
type, among which the diagnostic types of the faults F1, F2, F3, F4, F5, F6, F8 and F9 are
the same as the actual fault types, and two sets of training samples in F7 are diagnosed
as F9. The phenomena result from random interference or errors in data processing. In
general, the two-level fault diagnosis method designed in this paper can effectively achieve
sensor fault diagnosis.
Next, we should make concentration on verifying the effectiveness of the two-level fault

diagnosis method designed in this paper. We select 180 groups of test samples for testing.
There are 20 groups of test samples for each fault. The test results are shown in Figure
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6. It can be seen that the test accuracy is 99.4444% (179/180). With the exception of a
set of test samples in F7 being incorrectly diagnosed as F9, the remaining faults can be
accurately diagnosed. There are two reasons for this situation: first, since the accuracy of
training F7 is not high enough, it can also be diagnosed as F9; the other one is that, it may
be due to random noise or errors in data processing. In view of this situation, consider
using more groups of such fault type samples or changing the feature vector dimension
of the PNN and related parameters to comprehensively judge, so that it is possible to
further improve the diagnostic accuracy of this fault type.

6. Conclusions. This paper mainly focuses on the fault diagnosis of non-Gaussian sys-
tems subjected to random interference. First, a filter using correntropy as performance
index is designed to estimate the states of the system. Then a two-level fault diagnosis
method is proposed adopting a correntropy filter and a PNN network, and it is applied
in wind energy conversion system under high wind speed. The simulation results verify
that this method can perform well.

The insufficiency in this paper and the direction of further research are as follows. First,
the sensor fault diagnosis method based on correntropy filter proposed in this paper is
only applicable to the diagnosis of only one type of fault at the same time, and there has
been no expansion of research on the number of faults at the same time, or the situation
that the previous fault has not yet been resolved and new fault has occurred. Second, the
faults in this paper only consider sensor fault. Later studies may consider more types of
faults, such as actuator fault.
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