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Abstract. This paper investigates the stabilization design of a class of switched positive
linear systems under two classes of the dwell time switching signals. One class of dwell
time switching signals is confined by a certain pair of upper and lower bounds, and the
other is the minimum dwell time. The distinguishing feature of the proposed method is
the application of a type of multiple time-varying linear copositive Lyapunov functions.
A more efficient controller design method is also established. The computable sufficient
conditions on the stabilization are obtained in the framework of dwell-time switching and
the controller gains are solved by linear programming technique. Finally, a numerical
example is provided to verify the validity of the proposed design.
Keywords: Switched positive linear systems, Stabilization, Dwell time, Linear program-
ming

1. Introduction. Switched positive linear systems are a class of switched systems com-
posed of a family of positive linear subsystems. Switched positive linear systems arise
in a variety of applications [1, 2]. In the last few years, a considerable effort has been
devoted to the development of both theories and applications of switched positive linear
systems [3, 4, 5]. The main concern in the study of switched positive linear systems is
the issue of stability. Due to the fact that the state variables are confined to the positive
orthant, it is very difficult to study the stability of switched positive linear systems. Thus,
it is impossible to solve the stability of switched positive linear systems by using well de-
veloped methods for general switched systems [6, 7, 8]. Therefore, various methods have
been proposed to study the stability under arbitrary switchings of switched positive linear
systems by using the common vector-parameterized copositive Lyapunov function [9], the
common quadratic copositive Lyapunov function [3], and the switched linear copositive
Lyapunov function [10]. Most switched systems in practice, however, are not stability un-
der arbitrary switchings, yet they still may be asymptotically stable under some properly
chosen switching law based on the multiple linear copositive Lyapunov function [11, 12].
Many results in this direction have been available (see, for example, [13, 14]). For switched
positive linear systems under time-constrained switching, it has been shown that multiple
linear copositive Lyapunov functions have the advantage of extra flexibilities in system
analysis and synthesis [15, 16]. It is known that a dwell time of active subsystem can sub-
side for potentially possible large state transients [7, 8]. [17] studied the issues of robust
stability analysis for class switched positive linear systems with interval uncertainties by
constructing a class of multiple time-varying linear copositive Lyapunov functions.

On the other hand, stabilization is another of the basic fundamental issues in switched
positive linear systems [18]. For the stabilization of switched positive systems, the con-
troller designed not only guarantees the stability, but also ensures the positive of the
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closed-loop switched systems. Using multiple linear copositive Lyapunov functions asso-
ciated with linear programming, [19, 20] have investigated the stabilization of continuous-
time and discrete-time switched positive linear systems, respectively. To remove some
restrictions on the heavy computational burden, [21] proposed the controller design ap-
proach to switched positive systems. It is worth noting that there is still a lot of room for
improvements in the aforementioned results since there exist some restrictions in the con-
troller design. It is known that, for switched positive systems, the multiple time-varying
linear copositive Lyapunov functions may reduce some conservatism of stability analysis
[8, 17, 22, 23], and it may also be an effective tool for stabilization design.
In this paper, we will investigate the stabilization of a class of switched positive sys-

tems under two classes of the dwell time switching signals. We apply a type of multiple
time-varying linear copositive Lyapunov functions to obtain the computable sufficient
conditions on the stabilization of such switched systems in the framework of dwell-time
switching. The controller gains can be solved by linear programming technique. Last-
ly, an example is provided to demonstrate the effectiveness of the proposed result. The
main contributions of this manuscript are summarized as follows. 1) A type of multiple
time-varying linear copositive Lyapunov functions is utilized to achieve the stabilization
of switched positive linear systems. 2) A dwell time is pregiven and then check if there
exists a feasible solution to the linear programming conditions for such a dwell time, which
may reduce much conservatism.
This paper is organized as follows. Section 2 presents the problem formulation. Section

3 shows the main results. In Section 4, an illustrative example is presented to demonstrate
the effectiveness of the proposed method. Finally, Section 5 concludes the paper.
Notations: The notations used in this paper are standard. N is the set of nonnegative

and positive integer; ℜ, ℜn, and ℜn×n denote the fields of real numbers, n-tuples of real
numbers, and the space of n × n real matrices, respectively. Define ∥x∥1 and ∥x∥2 as
1-norm and Euclidean norm of x ∈ ℜn, respectively; ℜ+ represents the set of positive real
numbers. AT is the transpose of matrix A. In is the n× n identity matrix. aij stands for
the element in the ith row and the jth column of matrix A, and A ≻ 0 (A ≽ 0) means
aij > 0 (aij ≥ 0) for i, j = 1, 2, . . . , n. A ≻ B (A ≽ B) means aij > bij (aij ≥ bij) for
i, j = 1, 2, . . . , n.

2. Problem Formulation. Consider the following switched positive linear systems:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (1)

where x(t) ∈ ℜn is the state; u(t) ∈ ℜr is the control input; σ(t) : [0,∞) → S =
{1, 2, . . . ,M} represents a switching signal, which is assumed to be a piecewise constant
or piecewise continuous (from the right) function depending on time; M ≥ 2 is the number
of models (called subsystems) of the switched system. Moreover, Ap = [apij] ∈ ℜn×n, Bp ∈
ℜn×r, BT

p =
[
b(b1)T . . . b(bn)T

]
, ∀p ∈ S are unknown real constant matrices of appropriate

dimensions. When t ∈ [tk, tk+1), k ∈ N , we say that the σ(tk)th subsystem is active. We
assume that the state of the switched system (1) does not jump at the switching instants,
i.e., the trajectory x(t) is everywhere continuous.
Our goal is to design controllers to stabilize the switched positive systems (1) under the

following minimum dwell time signals, which satisfy the switching time sequence {tk}:

S1(δ1, δ2) = {{tk} ; δ1 ≤ tk+1 − tk ≤ δ2, k ∈ N} , (2)

S2(δ1,∞) = {{tk} ; tk+1 − tk ≥ δ1, k ∈ N} , (3)

where the known constants δ1 and δ2 satisfy δ2 ≥ δ1 > 0.
To study the stabilization of switched positive systems (1), we will recall some defini-

tions and lemmas.
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Definition 2.1. [21] System

ẋ(t) = Ax(t) +Bu(t) (4)

is positive if its states are non-negative for all time t whenever the initial condition x(t0)
and control input u(t) are non-negative, where t0 is the initial time instant.

Lemma 2.1. [16] System (4) is positive if and only if A is a Metzler matrix, and B ≽ 0.

3. Main Results. In this section, to ensure the stabilization of switched system (1), the
controller gains are designed and certain classes of switching signals are identified.

First, we define a class of multiple time-varying linear copositive Lyapunov candidate
functions as the following.

For any given switching times sequence {tk} ∈ S1(δ1, δ2), µ
(l)
p > 1, p ∈ S, we define two

piecewise linear functions ρ, ρ1 : [t0,∞) → ℜ+ and function φσ(t)(t):

ρ(t) =
t− tk

tk+1 − tk
, ρ1(t) =

1

tk+1 − tk
, t ∈ [tk, tk+1) , k ∈ N. (5)

φσ(t)(t) =
(
µ
(1)
σ(t)µ

(2)
σ(t)

)ρ(t)−1

. (6)

It is easy to check that

ρ(t) ∈ [0, 1) , ρ(t+k ) = 0, ρ
(
t−k+1

)
= 1. (7)(

µ
(1)
σ(t)µ

(2)
σ(t)

)−1

≤ φσ(t)(t) ≤ 1, t ∈ [0,∞) . (8)

Using ρ(t) and φ(t) above, we define the following class of multiple time-varying linear
copositive Lyapunov candidate functions:

V (t) = φσ(t)(t)x
T (t)

(
ρ(t)v

(1)
σ(t) + ρ̃(t)v

(2)
σ(t)

)
∆
= φσ(t)(t)x

T (t)vσ(t)(t), (9)

where v
(1)
σ(t) ≻ 0, v

(2)
σ(t) ≻ 0, ρ̃(t) = 1− ρ(t).

We now state our main results.

3.1. Case 1: σ(t) ∈ S1(δ1, δ2).

Theorem 3.1. Consider the switched system (1). For given positive scalars γ > 0,

µ
(l)
p > 1, 0 < η < 1, ςp = (ςp1, ςp2)

T ≻ 0, and vectors ṽp ∈ ℜn, ṽp ≻ 0, if there exist vectors

zp = (zp1, zp2, . . . , zpn)
T ≺ 0, v

(l)
p =

(
v
(l1)
p , v

(l2)
p , . . . , v

(ln)
p

)T
≻ 0, p ∈ S and l = 1, 2, such

that

ςp1 ≺ ṽTp B
T
p v

(l)
p ≺ ςp2, (10)

ς2papij + b(pi)ṽpzpj ≥ 0, 1 ≤ i, j ≤ n, i ̸= j, (11)

e−γδ1v(2)p ≼ ηµ(1)
p µ(2)

p v
(1)
p′ , (12)

Θplq ≼ 0, p ∈ S, l, q = 1, 2, (13)

where Θplq = ϑplq +
zp
ςp2

, with ϑplq =
(

1
δ1
ln
(
µ
(1)
p µ

(2)
p

)
I + AT

p + γI
)
v
(l)
p + 1

δq

(
v
(1)
p − v

(2)
p

)
,

q = 1, 2, then, the switched system (1) with the controller

u(t) = Kpx(t) =
ṽpz

T
p

ṽTp B
T
p v

(2)
p ṽTp B

T
p v

(1)
p

x(t) (14)

is positive and exponential stable under the dwell time switching signal σ(t) ∈ S1(δ1, δ2).
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Proof: According to (10), (11) and (14), we have

ς2papij + b(pi)ṽpzpj = [Ap +BpKp]ij ≥ 0, i ̸= j. (15)

Therefore, Ap +BpKp is a Metzler matrix, ∀p ∈ S. Then, the positive property of the
closed-loop switched system (1) can be obtained by Lemma 2.1.
Define W (t) = eγtV (t). For σ(t) = p, p ∈ S, when t ∈ [tk, tk+1), the time derivative of

W (t) is

Ẇ (t) = eγt
(
φ̇p(t)x

Tvp(t) + φp(t)(ẋ)
Tvp(t) + φp(t)x

Tρ1(t)
(
v(1)p − v(2)p

)
+γφp(t)x

Tvp(t)
)

≤ eγt
(
φp(t)x

T 1

δ1
ln
(
µ(1)
p µ(2)

p

)
vp(t) + φp(t)x

T (Ap +BpKp)
T vp(t) (16)

+φp(t)x
Tρ1(t)

(
v(1)p − v(2)p

)
+ γφp(t)x

Tvp(t)

)
.

Now, define a function ρ2(t) ∈ [0, 1], such that

ρ1(t) =
1

δ1
ρ̃2(t) +

1

δ2
ρ2(t), (17)

where ρ̃2(t) = 1− ρ2(t). Therefore, by (10), (14) and (17), one can get that

V̇ (t) + γV (t)

≤ φp(t)x
T 1

δ1
ln
(
µ(1)
p µ(2)

p

) (
ρ(t)v(1)p + ρ̃(t)v(2)p

)
+φp(t)x

T (Ap +BpKp)
T (ρ(t)v(1)p + ρ̃(t)v(2)p

)
+ γφp(t)x

Tvp(t)
(
ρ(t)v(1)p + ρ̃(t)v(2)p

)
+ φp(t)x

T

(
1

δ1
ρ̃2(t) +

1

δ2
ρ2(t)

)(
v(1)p − v(2)p

)
= φp(t)x

Tρ(t)

((
1

δ1
ln
(
µ(1)
p µ(2)

p

)
I + AT

p + γI

)
v(1)p +

zp

ṽTp B
T
p v

(2)
p

)

+φp(t)x
T ρ̃(t)

((
1

δ1
ln
(
µ(1)
p µ(2)

p

)
I + AT

p + γI

)
v(2)p +

zp

ṽTp B
T
p v

(1)
p

)

+φp(t)x
T (ρ(t) + ρ̃(t))

(
1

δ1
ρ̃2(t) +

1

δ2
ρ2(t)

)(
v(1)p − v(2)p

)
= φp(t)x

Tρ(t)ρ2(t)

(
ϑp12 +

zp

ṽTp B
T
p v

(2)
p

)
+ φp(t)x

Tρ(t)ρ̃2(t)

(
ϑp11 +

zp

ṽTp B
T
p v

(2)
p

)

+φp(t)x
T ρ̃(t)ρ2(t)

(
ϑp22 +

zp

ṽTp B
T
p v

(1)
p

)
+ φp(t)x

T ρ̃(t)ρ̃2(t)

(
ϑp21 +

zp

ṽTp B
T
p v

(1)
p

)

≤ φp(t)x
Tρ(t)ρ2(t)

(
ϑp12 +

zp
ςp2

)
+ φp(t)x

Tρ(t)ρ̃2(t)

(
ϑp11 +

zp
ςp2

)
+φp(t)x

T ρ̃(t)ρ2(t)

(
ϑp22 +

zp
ςp2

)
+ φp(t)x

T ρ̃(t)ρ̃2(t)

(
ϑp21 +

zp
ςp2

)
. (18)

For t ∈ [tk, tk+1), one has that

V̇ (t) + γV (t) ≤ 0, (19)

which describes the exponential decay of the Lyapunov function of the active subsystem.
On the other hand, according to (19), when t ∈ [tk, tk+1), we have

V
(
t−k+1

)
≤ e−γδ1V (tk) . (20)
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We assume that the switched system (1) switches from subsystem p′ to p at switching

instant tk+1. Then, by using the fact that φp

(
t+k+1

)
=
(
µ
(1)
σ(t)µ

(2)
σ(t)

)−1

, φp′
(
t−k+1

)
= 1, and

applying (9), (12) and (20), we obtain that

Vp (tk+1) = φp

(
t+k+1

)
xT
(
ρ
(
t+k+1

)
v(1)p + ρ̃

(
t+k+1

)
v(2)p

)
=
(
µ(1)
p µ(2)

p

)−1
xTv(2)p

≤ ηeγδ1xTv
(1)
p′ = ηeγδ1φp′

(
t−k+1

)
xT
(
ρ
(
t−k+1

)
v
(1)
p′ + ρ̃

(
t−k+1

)
v
(2)
p′

)
= ηeγδ1Vp′

(
t−k+1

)
≤ ηVp′ (tk) . (21)

For any given t > t0, there exists a positive integer k0 ∈ N, such that t ∈ [tk0 , tk0+1).
Combining (20) and (21), we have

V (t) ≤ e−γδ1V (tk0) ≤ ηe−γδ1V (tk0−1) ≤ η2e−γδ1V (tk0−2) ≤ · · · ≤ ηk0e−γδ1V (t0)

≤ ηt−t0e−γδ1V (t0) . (22)

According to (9), we obtain that

xTvσ(t)(t) =
n∑

i=1

xi

(
ρ(t)v

(1i)
σ(t) + ρ̃(t)v

(2i)
σ(t)

)
≥ ω1

n∑
i=1

xi ≥ ω1 ∥x∥2 , l = 1, 2.

On the other hand, we have

xTvσ(t)(t) =
n∑

i=1

xi

(
ρ(t)v

(1i)
σ(t) + ρ̃(t)v

(2i)
σ(t)

)
≤ ω2

n∑
i=1

xi(t) ≤
√
nω2 ∥x(t)∥2 , l = 1, 2, (23)

where ω1 = min
1≤i≤n,1≤p≤N

{
v
(1i)
p , v

(2i)
p

}
, ω2 = max

1≤i≤n,1≤p≤N

{
v
(1i)
p , v

(2i)
p

}
.

With the help of (22), (23), (24), and ∥x∥2 ≤ ∥x∥1 ≤
√
n ∥x∥2, we have

ω1φσ(t)(t) ∥x(t)∥2 ≤ φσ(t)(t)x
T (t)vσ(t) ≤ φσ(t0)(t0)x

T (t0)vσ(t)e
−γ(t−t0)

≤
√
nω2φσ(t0)(t0) ∥x(t0)∥2 e

−γ(t−t0). (24)

Then, ∥x(t)∥2 ≤ αe−γ(t−t0) ∥x (t0)∥2, where α =
√
nω2

ω1
max
1≤p≤N

{
µ1
pµ

2
p

}
. We obtain that

lim
t→∞

∥x(t)∥2 = 0.

In summary, the closed-loop switched system (1) is positive and exponential stable
under switching signal σ(t) ∈ S1(δ1, δ2). This completes the proof.

The condition on the upper bound of the dwell time in Theorem 3.1 can be removed if
some addition conditions are added. In the following, sufficient conditions for the stabi-
lization of the switched systems (1) will be under the switching signal σ(t) ∈ S2(δ1,∞).

3.2. Case 2: σ(t) ∈ S2(δ1,∞).

Theorem 3.2. Consider the switched system (1). For given positive scalars γ > 0,

µ
(l)
p > 1, 0 < η < 1, ςp = (ςp1, ςp2)

T ≻ 0, and vectors ṽp ∈ ℜn, ṽp ≻ 0, if there exist vectors

zp = (zp1, zp2, . . . , zpn)
T ≺ 0, v

(l)
p =

(
v
(l1)
p , v

(l2)
p , . . . , v

(ln)
p

)T
≻ 0, p ∈ S and l = 1, 2, such

that

ςp1 ≺ ṽTp B
T
p v

(l)
p ≺ ςp2, (25)

ς2papij + b(pi)ṽpzpj ≥ 0, 1 ≤ i, j ≤ n, i ̸= j, (26)

e−γδ1v(2)p ≼ ηµ(1)
p µ(2)

p v
(1)
p′ , (27)

Θpl ≼ 0, p ∈ S, l = 1, 2, (28)

v(1)p ≽ v(2)p , (29)



864 R. MA AND M. MA

where Θpl = ϑpl +
zp
ςp2

, with ϑpl =
(

1
δ1
ln
(
µ
(1)
p µ

(2)
p

)
I + AT

p + γI
)
v
(l)
p + 1

δ1

(
v
(1)
p − v

(2)
p

)
,

then, the switched system (1) with the controller

u(t) = Kpx(t) =
ṽpz

T
p

ṽTp B
T
p v

(2)
p ṽTp B

T
p v

(1)
p

x(t)

is positive and stable under the dwell time switching signal σ(t) ∈ S2(δ1,∞).

Proof: The proof of Theorem 3.2 is very similar to the one of Theorem 3.1, and it can
be easily derived by the methodology as above. Therefore, the proof of Theorem 3.2 is
omitted.

4. Example. This section provides an illustrative example to show the effectiveness of
the obtained result in this paper. Consider the switched positive linear system with two
subsystems:

ẋ(t) = Aσ(t)x(t) + Bσ(t)uσ(t), x(0) = x0, σ(t) : [0,∞) → S = {1, 2}, (30)

A1 =

[
−0.15 0.18
0.4 −0.4

]
, A2 =

[
−0.6 2
0.8 −0.5

]
, B1 =

[
0.5 0.4
0.3 0.3

]
, B2 =

[
0.2 0.3
0.4 0.4

]
.

In this case, we can apply Theorem 3.2 to designing a controller to stabilize the switched

positive linear system. Let γ = 0.01, η = 0.99, ς1 =

[
10
30

]
, ς2 =

[
10
30

]
, ṽ1 =

[
1
1

]
,

ṽ2 =

[
1
1

]
. Then, by means of Theorem 3.2, when δ1 = 0.1, we obtain:

v
(1)
1 =

(
8.0853
7.5647

)
, v

(2)
1 =

(
8.0831
7.4297

)
, v

(1)
2 =

(
8.1745
7.5122

)
,

v
(2)
2 =

(
8.0093
7.4864

)
, z1 =

(
−64.6756
−15.4971

)
, z2 =

(
−96.1484
−387.6896

)
,

K1 =

(
−0.4665 −0.1118
−0.4665 −0.1118

)
, K2 =

(
−0.9528 −3.9411
−0.9528 −3.9411

)
.

For the dwell time switching signal σ(t) ∈ S2(0.1,∞), we randomly choose a switching

signal shown in Figure 1. Let the initial state x(0) = [2, 1]T , Figure 2 shows the state
responses of the closed-loop switched system (30), and the corresponding state trajectories
of the closed-loop switched system (30) are shown in Figure 3. The example demonstrates

0 1 2 3 4 5

1

2

time/s

σ(
t)

Figure 1. Switching signal σ(t) ∈ S2(0.1,∞)
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0

0.5

1

1.5

2

2.5

3

3.5

time/s

x(
t)

 

 

x
1

x
2

Figure 2. State responses of the closed-loop switched system (30)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x
1
(t)

x 2(t
)

Figure 3. State trajectories of the closed-loop switched system (30)

the effectiveness of our obtained results. It is worth noting that the dwell time δ1 = 0.1s
in our paper is a pre-specification constant, which is different from the dwell time in [18]
by calculation. In addition, in this example, our specified dwell time 0.1s is less than the
dwell time 0.3256s obtained in [18].

5. Conclusions. The stabilization problem for a class of switched positive linear sys-
tems via linear programming has been investigated based on multiple time-varying linear
copositive Lyapunov functions. Sufficient conditions on stabilization have been presented
under two classes of dwell time switching signals, and the stabilization controller has been
obtained by solving the linear programming. The correctness and effectiveness of the pro-
posed approach are illustrated by a numerical example. The stabilization problem for a
class of discrete-time switched positive systems will be addressed in the future research.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China (61673198), and Provincial Natural Science Foundation of Liaoning
Province (20180550473).



866 R. MA AND M. MA

REFERENCES

[1] L. Fainshil and M. Margaliot, A maximum principle for the stability analysis of positive bilinear
control systems with applications to positive linear switched systems, SIAM Journal on Control &
Optimization, vol.50, no.4, pp.2193-2215, 2012.

[2] R. H. Middleton, P. Colaneri, E. Hernandez-Vargas and F. Blanchini, Continuous-time optimal con-
trol for switched positive systems with application to mitigating viral escape, International Journal
of Robust & Nonlinear Control, vol.21, no.10, pp.1093-1111, 2011.

[3] O. Mason and R. Shorten, On linear copositive Lyapunov functions and the stability of switched
positive linear systems, IEEE Trans. Automatic Control, vol.52, no.7, pp.1346-1349, 2007.

[4] L. Fainshil, M. Margaliot and P. Chigansky, On the stability of positive linear switched systems
under arbitrary switching laws, IEEE Trans. Automatic Control, vol.54, no.4, pp.897-899, 2009.

[5] E. Fornasini and M. E. Valcher, Linear copositive Lyapunov functions for continuous-time positive
switched systems, IEEE Trans. Automatic Control, vol.55, no.8, pp.1933-1937, 2010.

[6] D. Liberzon, Switching in Systems and Control, Birkhauser, Boston, 2003.
[7] J. Fu, R. Ma, T. Chai and Z. Hu, Dwell-time-based standard H∞ control of switched sys-

tems without requiring internal stability of subsystems, IEEE Trans. Automatic Control, doi:
10.1109/tac.2018.2876790, 2018.

[8] R. Ma, J. Fu and T. Chai, Dwell-time-based observers design for unknown inputs switched linear sys-
tems without requiring strong detectability of subsystems, IEEE Trans. Automatic Control, vol.62,
no.8, pp.4215-4221, 2017.

[9] Z. Meng, W. Xia, K. Johansson and S. Hirche, Stability of positive switched linear systems: Weak ex-
citation and robustness to time-varying delay, IEEE Trans. Automatic Control, vol.62, no.1, pp.399-
405, 2017.

[10] X. Liu, Stability analysis of switched positive systems: A switched linear copositive Lyapunov func-
tion method, IEEE Trans. Circuits & Systems II – Express Briefs, vol.56, no.5, pp.414-418, 2009.

[11] X. Zhao, Y. Yin, L. Lei and X. Sun, Stability analysis and delay control for switched positive linear
systems, IEEE Trans. Automatic Control, vol.63, no.7, pp.2184-2190, 2018.

[12] J. Zhang, Z. Han and F. Zhu, Finite-time control and L1-gain analysis for positive switched systems,
Optimal Control Applications & Methods, vol.36, no.4, pp.550-565, 2015.

[13] X. Zhao, Z. Yu, X. Yang and H. Li, Estimator design of discrete-time switched positive linear systems
with average dwell time, Journal of the Franklin Institute, vol.351, no.1, pp.579-588, 2014.

[14] S. Li, Z. Xiang and J. Guo, Stabilisation for positive switched T-S fuzzy delayed systems under
standard L1 and L∞ performance, International Journal of Systems Science, vol.49, no.6, pp.1226-
1241, 2018.

[15] J. Zhang, Z. Han, F. Zhu and J. Huang, Stability and stabilization of positive switched systems with
mode-dependent average dwell time, Nonlinear Analysis: Hybrid Systems, vol.9, no.1, pp.42-55,
2013.

[16] X. Zhao, L. Zhang, P. Shi and M. Liu, Stability of switched positive linear systems with average
dwell time switching, Automatica, vol.48, no.6, pp.1132-1137, 2012.

[17] R. Ma, X. Wang and Y. Liu, Robust stability of switched positive linear systems with interval
uncertainties via multiple time-varying linear copositive Lyapunov functions, Nonlinear Analysis:
Hybrid Systems, vol.30, pp.285-292, 2018.

[18] J. Zhang, J. Huang and X. Zhao, Further results on stability and stabilisation of switched positive
systems, IET Control Theory & Applications, vol.9, no.14, pp.2132-2139, 2015.

[19] J. Zhang and Z. Han, Robust stabilization of switched positive linear systems with uncertainties,
International Journal of Control Automation & Systems, vol.11, no.1, pp.41-47, 2013.

[20] J. Zhang, Z. Han, H. Wu and J. Huang, Robust stabilization of discrete-time positive switched
systems with uncertainties and average dwell time switching, Circuits Systems and Signal Processing,
vol.33, no.1, pp.71-95, 2014.

[21] J. Zhang, X. Zhao and R. Zhang, Improved controller design for uncertain positive systems and its
extension to uncertain positive switched systems, Asian Journal of Control, vol.20, no.3, pp.159-173,
2017.

[22] R. Ma and S. An, Minimum dwell time for global exponential stability of a class of switched positive
nonlinear systems, IEEE/CAA Journal of Automatica Sinica, vol.6, no.2, pp.471-477, 2019.

[23] R. Ma, S. An and J. Fu, Dwell-time-based stabilization of switched positive systems with only
unstable subsystems, SCIENCE CHINA Information Sciences, doi: 10.1007/s11432-018-9787-9.


