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Abstract. Local Binary Pattern (LBP) feature is used widely as a texture feature in
object recognition, face recognition, real-time recognitions, etc. in an image. LBP feature
extraction time is crucial in many real-time applications. To accelerate feature extrac-
tion time, in many previous works researchers have used CPU-GPU combination. In
this work, we provide a θ(1) time complexity implementation for determining the Local
Binary Pattern (LBP) features of an image. This is possible by employing the full capa-
bility of a GPU. The implementation is tested on LISS medical images.
Keywords: Local binary pattern, Medical image processing, Parallel algorithms, Graph-
ical processing unit, CUDA

1. Introduction. Local binary pattern is a visual descriptor proposed in 1990 by Wang
and He [1, 2]. Local binary pattern provides a distribution of intensity around a center
pixel. It is a non-parametric visual descriptor helpful in describing a distribution around
a center value. Since digital images are distributions of intensity, it is helpful in describing
an image. The pattern is widely used in texture analysis, object recognition, and image
description. The local binary pattern is used widely in real-time description, and analysis
of objects in images and videos, owing to its computational efficiency and computational
simplicity. It is a high performing feature in classifying objects. LBP is used in many
domains namely medical image analysis and understanding, object recognition, biomet-
rics, content-based image retrieval, remote sensing, industrial inspection, and document
classification. In addition, LBP has been successfully applied in application areas such as
dynamic texture recognition, fingerprint matching, visual inspection, image retrieval, and
biomedical image analysis, facial image analysis, motion analysis, edge detection, and en-
vironment modeling. LBP is very useful because of its ease of implementation, invariance
to monotonic changes and low computational complexity.

The local binary pattern feature is computed by finding the relative difference between
a pixel and its eight neighbors. A code of 1 is assigned if the surrounding pixel is greater
than the center pixel and zero if the center pixel is lesser than its neighbor. We get eight
binary codes each having 1 or 0 and the code is converted into a byte by multiplying
positional weights starting from 1 to 128. By this step, for each non-border pixel in an
image, we get a byte.

The detailed step is depicted in Figure 1. In a 3 × 3 image block, depending on the
intensity of neighbors when compared with the center pixel intensity of the block, a 1 or
0 is coded.
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Figure 1. Local binary pattern feature computation

Since each center pixel is having eight neighbors, we get an 8-bit code of 1s and 0s. This
eight-bit code is the LBP feature for the block. The LBP of the whole image is computed
by applying the LBP operator on each 3× 3 blocks surrounding each non-border pixel.
There are many variants of LBP. In general, the block size need not always be 3 × 3.

It can be extended to any distance P along the radius R. With the positions of center
pixel at (xc, yc), the sampling points P (xp, yp) on a circle having radius R at a distance
P is given by

xp = xc +R cos

(
2πp

P

)
yp = yc +R sin

(
2πp

P

) (1)

LBPr,p(xc) =

p−1∑
n=0

s(xr,p,n − xc)2
n (2)

where {
s(x) = 1 if x >= 0

s(x) = 0 if x < 0
(3)

The LBP based feature has been used in diverse application areas. The application areas
include face detection [3], face identification [4, 5, 6, 7, 8], facial expression recognition [9],
facial micro-expression recognition [10], and facial emotion recognition [11]. In [3] LBP
based face detection has been implemented on a GPU. Illumination invariance is achieved
by Gamma correction and difference of Gaussian. Parallelization on a GPU is done using
OpenCL. The researchers obtained a speedup of 5.45. LBP being a powerful descriptor
is used in face identification. This is evident in [4]. A combination of LBP and discrete
cosine transform on the grids of an image for face identification is developed [5]. Face
verification of facial images with aging is studied in [6]. In this work, Adaboost has been
used in enhancing the recognition rate. A parallel implementation of face identification
on GPU using OpenCL is carried out in [7]. Parallel implementation shows a speedup
of 30 when compared with the corresponding CPU based sequential implementation.
Recognition of facial expression using LBP feature is carried out in [9]. A variant of
LBP namely Volume-LBP and LBP on three orthogonal planes is used in facial micro-
expression recognition [10]. A total of LBP and its 21 variants are assessed for their
accuracy in facial emotion recognition [11].
LBP has been used in texture classification [12], texture analysis [13], peri-ocular bio-

metric identification [14] and pedestrian detection in autonomous driving [15]. Variants
of LBP namely complete LBP and multi-scale LBP are used in real-time texture classifi-
cation on a GPU [12]. A speedup between 14 to 18 is obtained in this work. In another
work, a speedup between 14 to 18 is obtained in real-time texture analysis on a GPU
[13]. Peri-ocular biometric identification [14] is another task in which LBP based features
are used. Parallelized human detection using LBP is carried out in [16]. A speedup of
about 10 is obtained in this work. A speedup between 8 and 60 is obtained in pedestrian
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detection for autonomous driving [15]. LBP and Histogram of Gradients (HOG) are used
as the features.

LBP has been used in brain tumor detection from 3D MRI images [17]. In this work
LBP on three orthognal planes has been calculated. In another work, LBP is used in the
classification of breast cancer in mammography images [18].

In this paper, we present an efficient θ(1) time complexity extraction method for local
binary pattern from an image. We have tested our technique on publicly available medical
images from LISS database. This work will help reduce the time in extracting LBP
features.

There have been a few parallel implementations of LBP feature extraction. Using SIMD
instructions in the SSE extension of CPU a speedup of 6.5 is achieved. LBP feature
extraction has been parallelized on a GPU [3, 7, 12, 15]. OpenCL and CUDA have been
used as the language for implementation. The highest speedup of 60 is obtained [15].

The outline of this paper is as follows. In Section 2, the methodology is presented. In
Section 3, the experimental setup and results are written. In Section 4, the conclusion
and future scope are provided.

2. Methodology. Over the last two decades, graphical processing units have trans-
formed from only graphics processors to support general purpose computing along with
CPUs. This has been due to high power consumption in CPUs when the frequency is
increased beyond a certain point. There has been a phenomenal growth in the memory
size of GPUs. In the GPU industry, Nvidia and AMD are the major manufacturers of
GPUs. Table 1 shows the memory size of GPUs with each release starting from beginning
releases to till date [19]. Table 2 shows the memory sizes of AMD GPUs [20].

Table 1. Nvidia GPU models, memory size

Sl.
No.

Desktop GPU
Year of first

release
Min memory
size in MB

Max memory
size in MB

1 Pre-GeForce 1995 2 32
2 GeForce 256 series 1999 32 64
3 GeForce 2 series 2001 32 64
4 GeForce 3 series 2001 64 128
5 GeForce 4 series 2002 64 128
6 GeForce FX series 2003 64 256
7 GeForce 6 series 2005 128 512
8 GeForce 7 series 2007 128 1024
9 GeForce 8 series 2008 128 1024
10 GeForce 9 series 2008 256 1024
11 GeForce 100 series 2009 512 1024
12 GeForce 200 series 2009 512 2048
13 GeForce 300 series 2009 512 2048
14 GeForce 400 series 2011 512 2048
15 GeForce 500 series 2011 1024 3072
16 GeForce 600 series 2012 512 4096
17 GeForce 700 series 2014 512 12288
18 GeForce 900 series 2016 2048 12288
19 GeForce 10 series 2018 2048 12288
20 Volta series 2017 12288 32768
21 GeForce 20 series 2018 8192 11264
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Table 2. AMD GPU models, memory size

Sl.
No.

Desktop GPU
Year of first

release
Min memory
size in MB

Max memory
size in MB

1 Wonder series 1986 0.0625 1
2 Mach series 1991 0.5 2
3 Rage series 1996 2 64
4 Radeon 7000 series 2001 32 128
5 Radeon 8000 & 9000 series 2001 64 256
6 Radeon R300 series 2002 64 256
7 Radeon X700 & X800 series 2005 128 256
8 Radeon X1000 series 2005 128 512
9 Radeon HD 2000 series 2007 256 1024
10 Radeon HD 3000 series 2009 256 1024
11 All-in-Wonder series 2000 32 512
12 Radeon HD 4000 series 2008 256 2048
13 Radeon HD 5000 series 2010 512 4096
14 Radeon HD 6000 series 2011 512 4096
15 Radeon HD 7000 series 2012 256 6144
16 Radeon HD 8000 series 2013 256 6144
17 Radeon R5/R7/R9 200 series 2013 256 8196
18 Radeon R5/R7/R9 300 series 2015 1024 8196
19 Radeon RX 400 series 2016 1024 8196
20 Radeon RX 500 series 2017 1024 8196
21 Radeon RX Vega series 2017 8196 8196

Table 3. Total LBP feature vector size

Image size LBP feature vector size in bytes Size in KB
256× 256 64516 63
512× 512 260100 254
1024× 1024 1044484 1020
2048× 2048 4186116 4088

As is evident in the above two table values, there has been a steady increase in memory
size with each release of GPUs. So algorithm designers need to encash on this trend.
There have not been major changes in the methods or techniques in the computational
tasks involving the GPUs over the years. Most of the methods of LBP computation
involve dividing the image into regions and computing the LBP on the regions and finally
aggregating the LBPs from each region [3, 8, 12]. So in this work, we introduce a novel
technique by which we make use of the large memory size available and we show that this
has a direct effect on reducing computation time.
We propose a novel method where LBP is computed on the whole image at once. We

create as many threads as the number of non-border elements in the image. Assume LBP
has to be computed for an image of size H×W . Then the image contains (H−2)×(W−2)
non-border pixels. The LBP feature vector size becomes,

size LBP (H,W ) = (H − 2)× (W − 2) bytes (4)

We provide the feature vector size in Table 3.
Many of the medical images include the images in the LISS database, and the resolution

varies between 512 and 1024. Even if the image is as large as 2048 × 2048, the memory



ICIC EXPRESS LETTERS, VOL.13, NO.9, 2019 871

required to store LBP is only about 4 MB. Since all the present day GPUs have memory
in the range of 8 GB, this is a practical and viable option.

3. Experimental Setup and Results. We have considered the publicly available LISS
database [21] in our experiment. The images in the database are from CT modality and
contain common imaging signs of lung diseases. We have used the DCMTK library for
processing medical images [22].

We have written parallel LBP feature extraction using a GPU on a supercomputer.
The supercomputer is powered by Intel(R) Xeon(R) CPU E5-2670 V3@2.30 GHz with 24
CPUs. The GPU is Tesla K40 with 2880 cores and 288 GB/s memory bandwidth with
total board memory 12 GB.

We have used CUDA for our implementation as CUDA implementation has shown bet-
ter results than OpenCL [23, 24]. The LBP computation is fastest if all the computation
is performed at once by all threads. This is achieved by setting the block size equal to
size of the non-border pixels in the image. Since Tesla K-40 GPU supports a maximum
thread block size as (1024, 1024, 64) we have made the block size equal to the number of
non-border pixels along each axis. Hence, we are able to obtain the highest speedup in
LBP computation.

3.1. Results. The sequential LBP computation with varying medical images is shown in
Table 4. As shown in the table, the sequential execution time increases with the image
size. We consider this time in speedup calculation.

Table 4. LBP sequential program execution time

Image size LBP function execution time (ms) End-to-end execution time (ms)
256× 256 6.524992 22.577024
512× 512 43.448418 63.505791
1024× 1024 98.803490 119.640221

With the above settings, we have computed LBP parallely using a GPU. The parallel
execution time is as shown in Table 5.

Table 5. LBP parallel program execution time

Image size
Thread block

size

Memory
transfer in
time (ms)

Kernel
execution
time (ms)

Memory
transfer out
time (ms)

End-to-end
execution
time (ms)

256× 256
16× 16 0.665376 0.044672 0.044064 17.802752
32× 32 0.663712 0.044000 0.043328 17.845888

1024× 1024 0.668704 0.013376 0.044160 17.420704

512× 512
16× 16 1.198976 0.158048 0.480896 22.597530
32× 32 1.198496 0.127872 0.488544 22.333183

1024× 1024 1.202080 0.013920 0.487872 21.828608

1024× 1024
16× 16 0.949568 0.181760 0.692352 18.060896
32× 32 1.177312 0.156800 0.844896 23.542688

1024× 1024 1.178080 0.012224 0.842208 22.963743

The speedup of LBP feature extraction considering kernel execution time is shown in
Table 6. As the image size increases by 256 × 256 to 512 × 512 a four-fold increase
or 256 × 256 to 1024 × 1024 a sixteen-fold increase, sequential execution time increases
linearly to the increase in number of pixels. However, in the parallel execution using
GPU, either for a four-fold increase in the case of 256 × 256 to 512 × 512 or 256 × 256
to 1024 × 1024 a 16-fold increase in pixels, there is no change in kernel execution time.
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Table 6. Speedup of LBP feature extraction considering kernel execution time

Image size Thread block size Speedup

256× 256
16× 16 146.0644
32× 32 148.2952

1024 × 1024 487.8133

512 × 512
16 × 16 274.9060
32 × 32 339.7805

1024 × 1024 3121.2943

1024 × 1024
16 × 16 543.5931
32 × 32 630.1242

1024 × 1024 8082.7462

Hence, the kernel execution time remains constant. The time complexity is θ(1). This
has been possible because in parallel execution using GPU, the utilization of a number of
threads equals the number of non-border pixels in the image and hence the computation
time remains constant. The highest speedup of 8082 is obtained with an image size of
1024 × 1024. This is the highest speedup achieved for LBP calculation in the literature.
Hence, we are able to achieve θ(1) computation time in LBP feature extraction.

3.2. Comparison with other parallel approaches. There are many works on parallel
LBP feature extraction using GPUs. The comparison of our approach with others is shown
in Table 7. Few works are available on parallel LBP which has LBP feature extraction as
part of other works and they do not mention the feature extraction time for LBP. Other
works are in literature where they extract LBP features but they do not mention the LBP
extraction time. Hence, such papers cannot be considered in comparison.

Table 7. Comparison of this work with other parallel works

Sl. No. Paper #1 Paper #2 Paper #3 Our work

Authors,
Year

C. Y. N. Dwith
and G. N. Rathna,

2013 [12]

C. Y. N. Dwith
and G. N. Rathna,

2012 [7]

N. Naik and
G. N. Rathna,

2014 [3]
End-to-end
execution
speedup

4.7228 − 5.45 6.22

Kernel
speedup with
1024 × 1024

image

− 34.0757 − 8082.7462

As shown in Table 7, our approach is better than other similar works. With each new
GPU release, the speed increases, owing to higher clock frequency. Hence, speed is not the
only criterion for comparison. It is to be noted that, in LBP extraction, by making thread
block size equal to the number of non-border elements in the image, the computation time
becomes θ(1). This is the highest possible kernel execution time. Also, now GPUs can
accommodate the LBP feature entirely in the global memory. Hence, splitting the image
into sub-parts and then computing the LBP feature is not necessary.

4. Conclusion and Future Scope. The capabilities of graphical processing units have
increased in memory size, the number of threads and speed. It is necessary to adapt
algorithms to this changing trend. We have shown a θ(1) time complexity method for
extracting local binary pattern features from a single medical image. As local binary
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pattern feature is used in real-time applications, our work will help reduce the feature
extraction time and thereby reduce response time.

There are many applications from various domains, which involves data parallel com-
putations. All such computations can be carried out faster by utilizing the full capability
of GPU. The initial techniques of repeated computation on each partition of data and
then aggregating the results can be changed to obtain less time complexity.
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