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Abstract. The Bayes spatio-temporal modeling has the advantage of estimating unob-
served areas using similarities in spatial characters from adjacent locations and seeing
changes in regional characteristics over time. Estimates for Bayes spatio-temporal mod-
eling are still using the MCMC algorithm which requires a long computational time and
becomes inappropriate to use if the model is hierarchically compiled and involves many
parameters. This paper aims to predict the unobserved locations with fast, accurate and
current developed estimation that is INLA. The modeling algorithms are divided into 3
main steps, Gamma distribution for overall data, Bernoulli for extreme data identifica-
tion and Generalized Pareto for extreme data. To produce accurate predictive values, we
innovatively purpose improvisations in determining spatial and temporal smoothing pa-
rameters, as well as determining the extreme value threshold using Measure of Surprise
method. The spatio-temporal data is the monthly rainfall of 57 locations from West Java,
Indonesia, observed from 1981-2017. The model produces satisfactory results: the spatio-
temporal modeling improves the estimation of rainfall in many missing and completely
unobserved data with the correlation between predictive and validation values about from
0.8 and RMSEP 137-195 mm for average to extreme rainfall, and 0.7 with RMSEP 224-
229 mm for high extreme rainfall.
Keywords: Extreme data analysis, Big data analysis, Bayes hierarchical spatio-temporal
model, INLA

1. Introduction. Astronomically, a country with a tropical climate has a large variety
of rainfall. This can lead to an increase or decrease in extreme rainfall which has the
potential to cause hydrometeorological disaster. Indonesia is one of the tropical climate
countries, with majority hydrometeorological disasters that continue to occur every end
to the beginning of the year in the rainy season. In Indonesia, tornadoes were the most
frequent disaster and caused damage to homes, while the victims of death and disappear-
ance were mostly caused by floods [1]. Because of the magnitude of the impact caused
by extreme rainfall, spatio-temporal modeling is needed to utilize the similarity of spatial
characteristics to be able to predict extreme weather for unobserved locations and obtain
temporal patterns from extreme climates.
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Big data analysis such as climate modeling is a representation of complex phenomena,
which may involve spatial and temporal interactions, and regional topography. The Bayes
method is one solution in representing these complex phenomena by designing a hierar-
chical structure for data and its parameters. Some studies that use Bayes modeling in
predicting weather include [2] modeled land fire data in Portugal with explanatory vari-
ables being wind direction and speed, vegetation and local topological conditions, while
[3] used a dynamic linear model on monthly maximum wind speed data.
Ordinarily, Bayesian inference obtains and predicts posterior distribution by using the

MCMC algorithm [4]; however, this algorithm has the convergence issue problem and
inefficient for spatio-temporal models that are arranged hierarchically. INLA (integrated
nested Laplace approximation) is a solution to the limitations of MCMC, which has
recently been used and is still being developed. INLA is designed to improve the efficiency
and accuracy of posterior distribution estimation by utilizing Laplace’s approximation.
[5] used the hierarchical Bayes method to model daily precipitation data in Norway with
INLA inference, which is a new method developed to overcome convergence problems
from MCMC inference [5-7].
The main objective of this paper is to predict quantile of monthly rainfall for observed

and unobserved locations, using the generalized Bayes spatio-temporal model as used in
[5]. Some improvisations are also carried out innovatively to get more accurate predic-
tions such as: 1) spatial and temporal smoothing parameters are essential for borrowing
strength across locations and efficiently estimating spatial and temporal trends; there-
fore, we revise the estimated value of spatial smoothing parameters with local regression
method, and temporal smoothing parameter with random walk of order 2 method; 2)
threshold, u, has an important role in assessing extreme data, a careful bias-variance
assessment must be performed to fix a suitable threshold; therefore we revise u using
measure of surprise (MoS) method as in [8,9].
From these improvisations, we obtained satisfying results including a more efficient

model compared to the cross validation study in [5] and the good correlation and RMSEP
mean value for spatio-temporal model. In the remainder of this paper, we present the
dataset, the detailed methodology and INLA inference which are explained in Section 2.
Results and discussions are reported in Section 3. Some concluding remarks and possible
future development are summarized in Section 4.

2. Dataset and Methodology. In this section, we present dataset, generalized Bayes
spatio-temporal modeling with its improvisations, and Bayesian inference using INLA.

2.1. Dataset. The complete dataset consisted of monthly rainfall accumulations record-
ed in milliliters at 57 stations during the period 1981-2017. The data were divided into
training set which was made available to spatio-temporal model, and a validation set
which was used to assess quantile predictions. In the training period, we have a mixed
dataset comprised of 45 observed (rich) stations and 12 unobserved (poor) stations. At
the poor stations, there are absolutely no observation or the number of samples n = 0. In
validation set, the data varies greatly. Only 1 station that has full sample size n = 144,
while as many 8 stations have sample sizes n < 30 with minimum sample size n = 2. The
exact coordinates of stations are shown in Figure 1, stations location is the location of
rainfall observation in West Java province, Indonesia.

2.2. Bayesian spatio-temporal model. We decompose space-time modeling into three
stages:
Stage 1: Let Y +

0 state the intensity of rainfall that is positive, i.e., Y +
0 = Y (s, t)|Y (s, t)

> 0 assumed to have a gamma distribution

Y +
0 ∼ Gamma {y;µ(s, t), k} :=

kk

µ(s, t)kΓ(k)
yk−1 exp

{
− ky

µ(s, t)

}
, y > 0. (1)
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Figure 1. (color online) Map of monitoring locations, colored according
to the estimated random effect

Stage 2: Threshold u(s, t) is derived from MoS method, then we defined exceedance
indicator as Bernouli’s random variable which states that daily rainfall exceeds the thresh-
old, i.e., Zu(s, t) = I{Y (s, t) > u(s, t)},

Zu(s, t) ∼ Ber {z; pu(s, t)} := pu(s, t)
z {1− pu(s, t)}1−z , z ∈ {0, 1}. (2)

Stage 3: With u(s, t) derived from stage 2, positive exceedance Y +
0 = Y (s, t) −

u(s, t)|Y (s, t)−u(s, t) assumed to have reparameterized GP distribution, which is a func-
tion of q-quantile, κq(s, t) and shape ξ ≥ 0. Therefore, generaly, α-quantile, yα(s, t) is

yα(s, t) =


u(s, t) + κq(s, t)

[{
1− α

pu(s, t)

}−ξ

− 1

]/{
(1− q)−ξ − 1

}
, ξ ̸= 0,

u(s, t) + κq(s, t) log

{
1− α

pu(s, t)

}/
log(1− q), ξ = 0.

(3)

To represent location and time diversity in spatio-temporal parameters in each step, a
regression equation is formulated additively, which is the sum of the spatial and temporal
random components which are assumed to be separable, as follows:

log {µ(s, t)} = βGam
0 + xGam(s) + xGam(t), (4)

logit {pu(s, t)} = βBer
0 + xBer(s) + xBer(t), (5)

log {κq(s, t)} = log {µ(s, t)}+ βGP
0 + xGP (s) + xGP (t). (6)

2.3. Improvisations of spatial, temporal and threshold parameters. In point da-
ta, spatial influence xGam(s), xBer(s) and xGP (s) are defined by the Matérn correlation
function in [10],

Cov {x(s1), x(s2)} = τ−1
s

21−v

Γ(v)

(√
2vh

ψ

)v

Kv

(√
2vh

ψ

)
, (7)

with h = ||s1 − s2|| being Euclidean distance, Kv with v = 1 is modified Bessel function
and ψ is spatial range (smoothing) parameter which has an important role in borrowing
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strength of spatial effects across nearby locations to predict the unobserved stations. We
perform the range of ψ using local regression method according to [11], and we derived ψ
about 106 km.
The temporal effects xGam(t), xBer(t) and xGP (t) are defined assumed to have a normal

distribution, then x∗(ω + 1) − 2x∗(ω) + x∗(ω − 1) ∼ Normal
(
0, τ−1

t

)
. τt effect the tem-

poral trends across locations; therefore, we obtained by modeling rainfall separately with
temporal effects only as follows: log {µ(s, t)} = xGam(t), so that we have τt being 0.035.
We assume the temporal effects in monthly basis and annually cyclic.
Threshold, u, is a very important parameter in extreme data modeling using GP distri-

bution. Determination of u values is a scheme to balance bias and variance of estimators.
Too low u may cause bias in the estimators, while too high u implies a large estimation
variance due to the small numbers of data that exceed the threshold [12-14]; therefore
u selection must be performed carefully. In our application, we select u by MoS [8,9].
MoS is useful for calculating the degree of discrepancy between the data with the given
distribution. The degree of incompatibility is measured by the expected surprise value
close to 0.5, whereas a value close to 0 or 1 indicates u selection mismatch. The u for GP
distribution is chosen when the surprise value converges to 0.5. For example, in Figure 2
the estimated u for station 20 is 171 millimeters, because 171 is the minimum point when
the surprise value convergence around 0.5.

Figure 2. Threshold selection using MoS for station 20

2.4. Bayesian inference with INLA. Let y(si, ti) = (y1, y2, . . . , ym) = y, i = 1, 2, . . .,
m is the observation data with the latent Gauss explanatory variable declared as η =
(η1, η2, . . . , ηm)

T then ηi = β0 + x(si) + x(ti), θy is a vector for hyperparameters for y,
and vector for hyperparameters for spatial and temporal random component is θx. The
distribution of prior hyperparameters is defined as π(θ) with θ = (θy, θx), and Gaussian
probability x can be written as π(x|θx). Let π(yi|ηi, θy) be a likelihood from yi with
condition of the explanatory variables ηi and likelihood from hyperparameters θy.
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INLA is an analytical Bayes-based inference, which can be applied to the generalized
additive model that is complex and hierarchical and produces an approximation to the
two posterior distributions of the following single variables:

π(θk|y) =
∫
π (x, θ|y) dxdθ−k, (8)

π(xi|y) =
∫ ∫

π (x, θ|y) dx−idθ =

∫
π(xi|θ,y)π(θ|y)dθ. (9)

The Laplace approximation is applied nestedly, to determine the posterior distribution of
the hyperparameter π(θ|y) at (8), and the posterior distribution of parameters π(xi|y) at
(9). More details on INLA estimation procedure and its statistical properties can be seen
in [6,11,15].

3. Main Results. To predict monthly rainfall quantile in each station using general-
ized Bayes spatio-temporal model in Equations (4)-(6), we derived spatial and temporal
random component and 95% pointwise credibility interval as in Figure 3. From Figure 3
(top), the model successfully predicts the spatial characteristics for observed and unob-
served locations. The spatial random components have almost significance for observed
locations. For poor station, the credibility interval is quite large, except for station 13, in
which the random component is almost significance and the credibility interval is small
rather than the other poor stations. It is because, station 13 is very close with the rich

Figure 3. Spatial (top) and monthly (bottom) effects for the three stages



94 R. N. RACHMAWATI, A. DJURAIDAH, A. H. WIGENA AND I W. MANGKU

station 14. It means the purposed model successfully borrows the strength of rich stations
to nearby locations. The estimated extreme spatial random effects for stage 3 (GP) are
presented in Figure 1. The poor stations have unique spatial effects. The model shows
that nearby locations have the same spatial characteristics.
We capture the temporal trend of monthly rainfall in Figure 3 (bottom). In stage 1

(Gamma), the monthly rainfall has significant positive effects in rainy season at the end of
the year, increase from October to January, and decrease to April. The dry season occurs
until the beginning of October with significant negative effects. In stage 2 (Bernoulli),
identification of extreme rainfall has the same behavior as in stage 1, while in stage
3 (GP), the probability of extreme rainfall with significant positive effects increasingly
occurs from May to August and decreases until the end of October. The estimated
GP shape parameters for stage 3 has the positive posterior mean ξ = 0.002, with 95%
credibility interval (0.0001, 0.006), showing that although the posterior mean is quite
small, the effect is significance and the rainfall data are heavy tailed. We choose the prior
of ξ using the concept of penalized complexity prior, for more details in [5,16].
Our goal is to predict quantile monthly rainfall for observed and unobserved locations

from derived model parameters. Using validation data, the results are presented in Table
1. In validation period monthly rainfall is not perfectly recorded; this resulted in not all
locations can be validated. Therefore, we determined the goodness of our model using the
mean of correlation and RMSEP (root mean square error prediction) between predicted
and real rainfall data and by setting aside unvalidated locations. At low (quantile 0.65)
and moderate extreme (quantile 0.80) the correlation mean is around 0.8, while in high
extreme (quantile 0.95 and 0.975) getting lower around 0.65-0.7. At the end of this
study in Figure 4, we present the rainfall classification for all spatial locations in West
Java using the classical non-parametric theory of local regression. According to resulted
shape parameter ξ = 0.002 from stage 3 (GP), it shows that rainfall data have the upper
extreme type, but this data does not show a high extreme corresponding to a small shape
parameter value. Therefore, using 0.65 quantile, from Figure 4, in rainy season the west,
east and southern parts of West Java tend to have higher rainfall than in the north. In
dry season, it has an average rainfall that is almost evenly distributed throughout the
West Java region.

Table 1. Estimated quantile of monthly rainfall

Quantile Correlation mean RMSEP mean
0.65 0.799 195.032
0.80 0.792 137.191
0.95 0.722 224.843
0.975 0.649 229.607

4. Conclusions. This paper combines three-stages modeling with three distributions,
i.e., gamma, Bernoulli and generalized pareto (GP) distribution in extreme value theory
with a flexible Bayesian approach to predict the amount of monthly rainfall for observed
and unobserved locations. The purposed model successfully predicts even for the unob-
served locations with good correlation and RMSEP mean overall. For spatio-temporal
cases with many unobserved locations and imperfect validation data, our predicted quan-
tile is good and could be made more complex if required by the context. We can enhance
fixed effects like altitude or general circulation model (GCM) simulation data which is
widely used in medium and long term weather prediction in statistical downscaling mod-
eling as some of the following research [17-19]. Our improvisations for spatial, temporal
and threshold selection as stated in Section 2.3 has succeeded in producing a model that is
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Figure 4. (color online) Regional monthly rainfall of West Java, Indonesia
(0.65 quantile)

quite precise and more efficient, compared to cross validation studies in [5] which require
high computational resources.
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