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Abstract. This paper investigates the flexible satellite attitude control system (ACS)
with time delay, actuator fault and disturbance. Based on robust control technique, a
control strategy is proposed to improve the performance of ACS; meanwhile, the distur-
bance and actuator fault are estimated accurately by composite observer. Specially, the
correlative factor of time delay is built to decrease the impact of time delay on flexible
satellite ACS. And lastly, the effectiveness of the presented method is illustrated by sim-
ulations.
Keywords: Flexible satellite, Attitude control system, Disturbance observer, Actuator
fault, Robust control, Time delay

1. Introduction. The flexible satellite is one of the most important devices for human
to explore the space. To work persistently in space, the flexible satellite must carry one
pair or more solar panels to provide sustainable energy [1]. The solar panels are flexible
appendages, which may cause time-varying disturbance to affect the stability of flexible
satellite ACS [2,3]. Therefore, the disturbance must be considered in the ACS design of
flexible satellite.

Due to the high stability demands, many sophisticated control methods have been
applied to handling the disturbance of flexible satellite [4-6]. In [7], disturbance observer
based control (DOBC) and feedback controller were proposed to estimate disturbance and
obtain desirable performance. A novel control scheme was proposed to further improve
the accuracy of flexible satellite based on DOBC and the state observer in [8]. However,
the control and feedback information are transmitted over the network, and the network
communication delay often exists in the ACS of flexible satellite. Thus, the time delay
cannot be ignored in flexible satellite ACS.

To achieve the high precision of flexible satellite ACS, the input delay was considered
to enhance the reliability in [9]. In [10], the technique of time delay compensation was
introduced to weaken the impact of time delay on flexible satellite ACS. In addition to
time delay and disturbances, the actuator fault is also one of the factors, which affects
the performance of flexible satellite ACS. To handle the actuator fault, the fault-tolerant
control (FTC) and Chebyshev neural network were combined to improve the accuracy of
flexible satellite ACS in [11]. In [12], a reliable controller was designed based on FTC
and sliding mode control (SMC), and the stability of flexible satellite ACS was improved
under actuator fault. However, in order to guarantee the attitude control performance of
flexible satellite, the disturbance, time delay and actuator fault need to be further studied
together for flexible satellite ACS.

Motivated by the above, disturbance, time delay and actuator fault are taken into
account for flexible satellite ACS in this paper. Based on composite observer and robust
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control technique, a feasible control strategy is proposed to improve the performance of
flexible satellite ACS, and the time delay correlative decomposition factor is introduced
to lower the impact of time delay on flexible satellite ACS. Finally, the effectiveness of
the presented strategy is proved by simulations.

2. Model Description of Flexible Satellite. The dynamic equation of a single axis
rotational flexible satellite [13,14] is described as follows:{

Jα̈(t) +Gµ̈(t) = u(t) + F (t)

µ̈(t) + Cmµ̇(t) + Λµ(t) +GT α̈(t) = 0
(1)

where J denotes the rotational inertia of the satellite, α(t) represents the attitude angle,
G is the rigid-elastic coupling coefficient, µ(t) denotes the flexible modal coordinate,
u(t) is the control torque, F (t) represents the bounded fault of reaction wheel and is
supposed to satisfy F (t) ∈ l2[0,+∞), Λ denotes a known stiffness matrix with Λ =
[diag(ω2

i ), i = 1, 2, . . . , n], ωi is the modal frequency, n represents number of the modes,
Cm denotes a known modal damping matrix with Cm = [diag(2ξiωi), i = 1, 2, . . . , n], and
ξi is the damping ratio. Because of the low frequency modes with concentrative vibration
energy in a flexible structure, the first two bending modes are taken into account in this
paper. Therefore, the system (1) can be further described as the following state-space
form:

ẋa(t) = Aaxa(t) +Bau(t) + BaF (t) +BaD(t) (2)

where D(t) = G [Cmµ̇(t) + Λµ(t)], Aa =

[
O I
O O

]
, Ba =

[
O(

J −GGT
)−1

]
, xa(t) =[

α(t)

α̇(t)

]
.

In this paper, D(t) is a bounded time-varying disturbance caused by flexible ap-
pendages. The state variable xa(t) consists of the attitude angle α(t) and attitude angular
velocity α̇(t).

Remark 2.1. [4]. Considering the physical characteristics of the flexible satellite, J −
GGT is nonsingular and

(
I −GTJ−1G

)−1
exists.

Assumption 2.1. [15]. The pair (Aa, Ba) is completely controllable.

Assumption 2.2. [3]. This paper considers the additive actuator fault F (t). It is rea-
sonable to assume that the derivative of F (t) is bounded in practice.

3. Composite Observer and Controller Design. In this subsection, a composite
system will be designed by disturbance observer, fault estimation observer and robust
controller. Based on (1), then we have

µ̈(t) = −RµCmµ̇(t)−RµΛµ(t)−RµG
TJ−1u(t)−RµG

TJ−1F (t) (3)

where Rµ =
(
I −GTJ−1G

)−1
, then the following system is used to represent the modeled

bounded time-varying disturbance:{
ω̇(t) = Hω(t)−Hµu(t)−HµF (t)

D(t) = Lω(t)
(4)

where ω(t) denotes the state variable of the D(t). H, Hµ and L are expressed as ω(t) =[
µ(t)

µ̇(t)

]
, L =

[
GΛ GCm

]
, H =

[
O I

−RµΛ −RµCm

]
, Hµ =

[
O

RµG
TJ−1

]
.
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For D(t), the disturbance observer is designed as
D̂(t) = Lω̂(t)

ω̂(t) = Q(t)−N0xa(t)

Q̇(t) = (H +N0BaL)(Q(t)−N0xa(t)) +N0Aaxa(t)

+ (N0Ba −Hµ)
(
u(t) + F̂ (t)

) (5)

where D̂(t), ω̂(t) and F̂ (t) are the estimations of D(t), ω(t) and F (t) respectively. N0 is
the observer gain, and Q(t) represents an auxiliary variable of disturbance observer. For
F (t), the fault estimation observer is given by F̂ (t) = Q0(t)−N1xa(t)

Q̇0(t) = N1

(
Aaxa(t) +Bau(t) +BaD̂(t)

)
+N1Ba(Q0(t)−N1xa(t))

(6)

where Q0(t) denotes an auxiliary variable of fault estimation observer, and N1 is the
observer gain. The estimation errors of F (t) and D(t) are defined respectively as eF (t) =

F (t)− F̂ (t) and eω(t) = ω(t)− ω̂(t). Then, we have

ėω(t) = ω̇(t)− ˙̂ω(t) = (H +N0BaL)eω(t) + (N0Ba −Hµ)eF (t) (7)

ėF (t) = Ḟ (t)− ˙̂
F (t) = Ḟ (t) +N1BaeF (t) +N1BaLeω(t) (8)

Since network transmission time delay exists from the controller to actuator, the robust
controller can be designed as follows:

u(t) = Kxa(t− τ(t))− D̂(t)− F̂ (t) (9)

where K is the controller gain to be determined later. It is assumed that τ(t) is unknown
bounded delay with 0 < τ(t) ≤ τ̃ , and delay-rate satisfies 0 < τ̇(t) ≤ ε < 1, τ̃ and ε
denote the upper bounds of τ(t) and τ̇(t) respectively. From (2), (7), (8) and (9), the
composite system can be obtained

ẋ(t) = Ax(t) + Aτx(t− τ(t)) + BḞ (t) (10)

where

x(t) =
[
xT
a (t) eTω(t) eTF (t)

]T
,

x(t− τ(t)) =
[
xT
a (t− τ(t)) eTω(t− τ(t)) eTF (t− τ(t))

]T
,

A =

 Aa BaL Ba

O H +N0BaL N0Ba −Hµ

O N1BaL N1Ba

 , Aτ =

 BaK O O
O O O
O O O

 , B =

 O
O
I

 .

The H∞ performance reference control output is given by

y(t) = Cx(t) + Cτx(t− τ(t)) (11)

where C =
[
C1 C2 C3

]
and Cτ =

[
Cτ1 Cτ2 Cτ3

]
are the known parameter matri-

ces. On the basis of (10) and (11), it yields{
ẋ(t) = Ax(t) + Aτx(t− τ(t)) +BḞ (t)

y(t) = Cx(t) + Cτx(t− τ(t))
(12)

In this paper, two following objectives for the system (12) need to be achieved:
• When Ḟ (t) = 0, the system (12) is asymptotically stable (AS) by designing the gains

K, N0 and N1.
• The system (12) with any nonzero Ḟ (t) ∈ [0,∞) is AS, and H∞ performance is

satisfied with ||y(t)||22 < γ2||Ḟ (t)||22, where γ > 0 is prescribed scalar.
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To reach the main results, the following lemma is given.

Lemma 3.1. [13]. For any matrix Ξa > O, scalars β1 > β2 > 0, if a Lebseque vector
φ(s) exists, then the following inequality holds:

−
∫ β1

β2

φT (s)Ξaφ(s)ds ≤ − 1

β1 − β2

∫ β1

β2

φT (s)dsΞa

∫ β1

β2

φ(s)ds (13)

4. Main Results. In this section, the controller gain K, observer gain N0 and observer
gain N1 will be computed simultaneously by LMI. To simplify the description, defining
xτ (t) = x(t− τ(t)), symbol sym() denotes sym(Z) = Z + ZT and Z is a matrix.

Theorem 4.1. The scalars γ > 0, 0 < δ < 1, 0 ≤ c ≤ 1 and τ̃ > 0 are given, if matrices
S1, S2, S3, S4, M > O, W > O and R > O exist, the following LMI holds:

Θ5 < O (14)

then, the system (12) is AS, and the H∞ performance is satisfied with ||y(t)||22 <γ2
∥∥∥Ḟ (t)

∥∥∥2

2
.

Here

Θ5 =



Ω1 + CTC Ω2 + CTCτ Ω4 Ω6 S1B

∗ Ω3 + CT
τ Cτ Ω5 Ω7 S2B

∗ ∗ σaW −S3 S3B

∗ ∗ ∗ Ω8 S4B

∗ ∗ ∗ ∗ −γ2I

 ,

Ω1 = M + σaW + sym(S1A), Ω2 = −σbW + S1Aτ + ATST
2 , Ω4 = σcW + ATST

3 ,

σa = −1

τ̃
, σb = −1− c

τ̃
, σc =

c

τ̃
, Ω3 = −δM + 2σbW + sym(S2Aτ ),

Ω5 = −σbW + AT
τ S

T
3 , Ω6 = R− S1 + ATST

4 , Ω7 = AT
τ S

T
4 − S2,

Ω8 = sym(−S4) + τ̃W.

Proof: The following Lyapunov-Krasovskii functional is chosen:

Vx(x(t), t) = xT (t)Rx(t) +

∫ t

t−τ(t)

xT (s)Mx(s)ds+

∫ 0

−τ̃

∫ t

t+σ

ẋT (s)Wẋ(s)dsdσ (15)

and then, the time derivative of Vx(x(t), t) is provided by

V̇x(x(t), t) = ẋT (t)Rx(t) + xT (t)Rẋ(t) + xT (t)Mx(t)− (1− τ̇(t))xT
τ (t)Mxτ (t)

+ τ̃ ẋT (t)Wẋ(t)−
∫ t

t−τ̃

ẋT (s)Wẋ(s)ds (16)

Then, the equivalent decomposition of
∫ t

t−τ̃
ẋT (s)Wẋ(s)ds is described as follows:

−
∫ t

t−τ̃

ẋT (s)Wẋ(s)ds = −c

∫ t

t−τ̃

ẋT (s)Wẋ(s)ds− (1− c)

∫ t

t−τ̃

ẋT (s)Wẋ(s)ds (17)

where c is known as the time delay correlative decomposition factor, and satisfies 0 ≤ c ≤
1. Combining (16) with Lemma 3.1, then we have

V̇x(x(t), t)

≤ ẋT (t)Rx(t) + xT (t)Rẋ(t) + xT (t)Mx(t)− δxT
τ (t)Mxτ (t) + τ̃ ẋT (t)Wẋ(t) + Θa (18)
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where δ = 1 − ε, Θa = ΘT (t)Θ1Θ(t), Θ(t) =
[
xT (t) xT

τ (t) xT (t− τ̃)
]T
, Θ1 = σaW −σbW σcW

∗ 2σbW −σbW

∗ ∗ σaW

.
First, Ḟ (t) = 0 is considered to analyze the stability of system (12). Note that

2
(
xT (t)S1 + xT

τ (t)S2 + xT (t− τ̃)S3 + ẋT (t)S4

)
(−ẋ(t) + Ax(t) + Aτxτ (t)) = 0 (19)

where S1, S2, S3 and S4 are the dimensional matching arbitrary matrices. On the basis
of (18) and (19), one has

V̇x(x(t), t) ≤ ΘT
2 (t)Θ3Θ2(t) (20)

where Θ2(t) =
[
xT (t) xT

τ (t) xT (t− τ̃) ẋT (t)
]T
, Θ3 =


Ω1 Ω2 Ω4 Ω6

∗ Ω3 Ω5 Ω7

∗ ∗ σaW −S3

∗ ∗ ∗ Ω8

.
By employing the Schur complement lemma for (14), then we obtain Θ3 < O, which

means system (12) is AS. When Ḟ (t) ̸= 0, similar to (19), the following equality is
established:

2
(
xT (t)S1 + xT

τ (t)S2 + xT (t− τ̃)S3 + ẋT (t)S4

) (
−ẋ(t) + Ax(t) + Aτxτ (t) +BḞ (t)

)
= 0 (21)

Next, the H∞ performance will be verified based on the following auxiliary function:

Ψ(x(t)) =

∫ t

0

(
∥y(s)∥22 − γ2

∥∥∥Ḟ (s)
∥∥∥2

2

)
ds (22)

Furthermore, we obtain

Ψ(x(t)) ≤
∫ t

0

(
∥y(s)∥22 − γ2

∥∥∥Ḟ (s)
∥∥∥2

2
+ V̇x(x(s), s)

)
ds (23)

Combining (12), (16), (21) and (23), we have

∥y(s)∥22 − γ2
∥∥∥Ḟ (s)

∥∥∥2

2
+ V̇x(x(s), s) ≤ ΘT

4 (s)Θ5Θ4(s) (24)

where Θ4(s) =
[
xT (s) xT

τ (s) xT (s− τ̃) ẋT (s) Ḟ T (s)
]T
.

Based on (14), we have known that Θ5 < O, which means ∥y(t)∥22 < γ2
∥∥∥Ḟ (t)

∥∥∥2

2
.

Therefore, the H∞ performance is satisfied with ∥y(t)∥22 < γ2
∥∥∥Ḟ (t)

∥∥∥2

2
, and the system

(12) is AS. This concludes the proof. Because the gains K, N0 and N1 are unable to
be solved by Theorem 4.1, on the basis of Theorem 4.1, the following theorem is further
achieved.

Theorem 4.2. Given scalars γ > 0, 0 < δ < 1, 0 ≤ c ≤ 1, τ̃ > 0, σ2, σ3, σ4, if there
exist matrices Ma1 > O, M2 > O, M3 > O, Wa1 > O, W2 > O, W3 > O, Ra1 > O,
R2 > O, R3 > O, SN0, SN1, Sk and nonsingular matrices X, S22, S33, the following LMI
holds:

Θ6 < O (25)

when the observer gains N0 = S−1
22 SN0, N1 = S−1

33 SN1, controller gain K = SkX
−T , the

system (12) is AS, and the H∞ performance is satisfied with ∥y(t)∥22 < γ2
∥∥∥Ḟ (t)

∥∥∥2

2
. Here
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Θ6 =



θ′11 θTc Ba θ′14 O O θ′17 O O θ′1a O O O θ′1e

∗ θ′22 θ′23 θ′24 θ′25 θ′26 θ′27 θ′28 θ′29 θ′2a θ′2b θ′2c O CT
2

∗ ∗ θ′33 θ′34 θ′35 θ′36 θ′37 θ′38 θ′39 θ′3a θ′3b θ′3c S33 CT
3

∗ ∗ ∗ θ′41 O O θ′47 O O θ′4a O O O θ′4e

∗ ∗ ∗ ∗ θ′55 O O θ′58 O O θ′5b O O CT
τ2

∗ ∗ ∗ ∗ ∗ θ′66 O O θ′69 O O θ′6c θ′6d CT
τ3

∗ ∗ ∗ ∗ ∗ ∗ θ′77 O O θ′7a O O O O

∗ ∗ ∗ ∗ ∗ ∗ ∗ θ′88 O O θ′8b O O O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ′99 O O θ′9c θ′9d O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ′aa O O O O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ′bb O O O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ θ′cc θ′cd O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



,

θ′11 = sym(AaX
T ) + θ′77 +Ma1, θ′14 = −σbWa1 + θTd + σ2XAT

a ,

θ′17 = σ3XAT
a + σcWa1, θ′1a = σ4XAT

a +Ra1 −XT , θ′1e = XCT
1 ,

θ′22 = sym
(
θTb + S22H

)
+ σaW2 +M2, θ′23 = θTe + θa − θTg , θ′24 = σ2θc,

θ′25 = −σbW2 + σ2H
TST

22 + σ2θb, θ′26 = σ2θa, θ′27 = σ3θc, θ′29 = σ3θa,

θ′2a = σ4θc, θ′28 = σcW2 + σ3H
TST

22 + σ3θb, θ′2b = R2 − S22 + σ4H
TST

22 + σ4θb,

θ′2c = σ4θa, θ′33 = sym
(
θTf

)
+ θ′99 +M3, θ′34 = σ2B

T
a , θ′35 = σ2θe − σ2θg,

θ′36 = σ2θf + θ′69, θ′37 = σ3B
T
a , θ′38 = σ3θe − σ3θg, θ′39 = σ3θf + σcW3,

θ′3a = σ4B
T
a , θ′3b = σ4θe − σ4θg, θ′3c = R3 − S33 + σ4θf ,

θ′41 = −δMa1 + 2σbWa1 + sym
(
σ2θ

T
d

)
, θ′47 = −σbWa1 + σ3θd,

θ′4a = −σ2X
T + σ4θd, θ′4e = XCT

τ1, θ′55 = −δM2 − 2θ′58,

θ′58 = −σbW2, θ′5b = −σ2S22, θ′66 = −δM3 − 2θ′69, θ′69 = −σbW3,

θ′6c = −σ2S33, θ′6d = −θ′6c, θ′77 = σaWa1, θ′7a = −σ3X
T , θ′88 = σaW2,

θ′8b = −σ3S22, θ′99 = σaW3, θ′9c = −σ3S33, θ′9d = −θ′9c, θg = HT
µ S

T
22,

θ′aa = sym
(
−σ2X

T
)
+ τ̃Wa1, θ′bb = sym(−σ4S22) + τ̃W2, θ′cd = σ4S33,

θc = LTBT
a , θ′cc = sym (−σ4S33) + τ̃W3, θa = θcS

T
N1
, θb = θcS

T
N0
,

θd = ST
k B

T
a , θe = BT

a S
T
N0
, θf = BT

a S
T
N1
.

Proof: Because X, S22 and S33 are nonsingular matrices, pre-multiplying and post-
multiplying both sides of (25) with diag {X−1, I, I,X−1, I, I,X−1, I, I,X−1, I, I, I, I} and
its transpose, some matrices are defined as follows:

M = diag{M1,M2,M3}, W = diag{W1,W2,W3}, R = diag{R1, R2, R3},
S1 = diag{S11, S22, S33}, S2 = σ2S1, S3 = σ3S1, S4 = σ4S1, Wa1 = XW1X

T ,

Ma1 = XM1X
T , Ra1 = XR1X

T , X = S−1
11 , K = SkX

−T , SN0 = S22N0,

SN1 = S33N1.

Then, we can arrive at (14), the system (12) is AS, and the H∞ performance is satisfied

with ||y(t)||22 < γ2
∥∥∥Ḟ (t)

∥∥∥2

2
based on Throrem 4.1. The proof is thus completed.
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5. Numerical Simulation. This section assumes that the flexible satellite only runs in
an altitude of 500 km with a circular orbit, the orbit rate na = 0.0011 rad/s. A ramp
fault with slope 0.015 is assumed to take place from 20 s to 40 s. The model parameters
are given in [14]

J = 35.72 kg·m2, ε = 0.1, ω1 = 3.17 rad/s, ω2 = 7.38 rad/s, ξ1 = 0.0001,

ξ2 = 0.00015, G = [ 1.27814 0.91756 ], α̇(0) = 0.001 rad/s, α(0) = 0.08 rad,

C1 = [ 1 0 ], Cτ1 = [ 0 0 ], C2 = Cτ2 =
[
0 0 0 0

]
, C3 = Cτ3 = 0,

γ = 1.67, σ2 = σ3 = σ4 = 1.

When c = 0.9, τ̃ = 2.5 ms, simulation results are based on Theorem 4.2 under Matlab
environment, and then the controller gain and observer gains can be obtained as follows:

N1 = [ 0 −62.1871 ], K = [ −19.0634 −102.6237 ], N0 =


0 −1.3678
0 −1.8598
0 1.2782
0 0.9210

 .

Based on Figure 1 and Figure 2, we can see that the disturbance D(t) and actuator fault
F (t) are estimated effectively. Figure 3 and Figure 4 show α(t) and α̇(t) under different
c respectively, and it can be seen that α(t) and α̇(t) tend to zero gradually, which means
the system (12) is AS. From Figure 3 and Figure 4, we can observe that the case c = 0.1
is the best case and case c = 0.9 is the worst case, but case c = 0.7 is better than case
c = 0.4 and case c = 0.9, which means c is useful to reduce design conservatism.

Figure 1. D(t) and its estimation Figure 2. F (t) and its estimation

Figure 3. α(t) under dif-
ferent c

Figure 4. α̇(t) under dif-
ferent c

6. Conclusions. In this paper, a composite observer based robust control approach has
been introduced for flexible satellite ACS to achieve a stable attitude control performance.
Specially, the time delay correlative decomposition factor has been introduced to reduce
the effects of time delay on ACS. The simulations further show that the proposed strategy
can guarantee the stability of ACS, and time-varying disturbance and actuator fault can
be estimated effectively. However, this paper does not consider the input delay in the
flexible satellite ACS, and it can be further studied in the future work.
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