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Abstract. This paper proposes a successful technique for designing a PIDA (propor-
tional-integral-derivative-acceleration) controller in both continuous-time and discrete-
time frameworks, which provides better transient response specifications in comparison
with PID (proportional-integral-derivative) controller for third-order plant. The proposed
design technique consists of three major steps. First, the PIDA controller is designed
by using Kitti’s method based on root locus technique in the control loop. Second, the
maximum percentage overshoot can be decreased to satisfy specification by applying the
forward controller. Based on these two steps, all desired specifications can be achieved
without trial and error method for tuning controller parameters. Lastly, the Posicast
controller is simply designed because the controlled system can be approximated as a
standard second-order system. The performances of the designed PIDA controller are
confirmed through MATLAB simulation results.
Keywords: Continuous-time/Discrete-time PIDA controllers, Kitti’s method, Posicast
controller, Third-order plant, Overshoot

1. Introduction. The well-known PID (proportional-integral-derivative) controller is
widely used in industrial control system because it can be simply designed for second-
order plants. However, the PID tuning has generally high percentage overshooting of
step response as well as quite difficultly design for third-order plant which are used in
many control applications because the order of plant is greater than the number of zeros
provided by the PID controller. This is the reason that Dr. Dorf has proposed the new
controller structure as the PIDA (proportional-integral-derivative-acceleration) controller
[1] by adding the zero in PID controller. Other approach for third-order or higher-order
plant, an analytical approach of PID and n − 2 stage PD as cascade controller was pro-
posed by Dr. Kitti [2]. The design technique called KM (Kitti’s method) is based on
root-locus technique placing almost zeros provided by the controller (except one zero) to
close with the poles of the controlled plant. The remained zero is required to find its loca-
tion along with the controller gain that satisfies system stability as desired specifications.
This design technique is also extended to the PIDA controller design both continuous-time
and discrete-time system [3]. In [4], PIDA controller design by using KM and DA (Dorf’s
approach) has better performance compared to PID controller designed for third-order
plant. Recently, a new approach of PIDA controller design by using CF (closed-form)
formulas was proposed [5]. In this approach, the system transfer function is formulated
in vector-matrix forms, and then the parameters of PIDA controllers can easily find to
satisfy the designed specification. The performance of this approach is also confirmed
in the designing of a PIDAJ (proportional-integral-derivative-acceleration-jerk) controller
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for fourth-order plants [6]. However, the controlled systems need to adjust the controller
gain from the first designed value which is obtained by these three analytical approaches
(DA, KM and CF formula) to satisfy all desired specification and still have an overshoot.
This paper aims at controller design which will satisfy all desired specification on the first
design value of the controller gain and eliminate the overshoot. The original Posicast
control can be applied to achieving a good steady-state performance without overshoot
[7]. There are many researches confirming the performance of Posicast control such as
the PID × (n − 2) stage PD cascade controllers for unstable nonlinear system [8,9], the
design of PID Posicast control for uncertain system [10] and uncertain oscillatory system
[11], respectively. Thus, the authors proposed to apply the Posicast PIDA control for the
third-order plant to satisfy specification and eliminate overshoot without any adjusting
the controller gain or trial and error tuning. The Posicast PIDA controller using KM and
the other analytical methods of PIDA controller design are compared in this paper.
The article in this paper is organized into five sections. Methodology of the proposed

design for PIDA controller applied to simplified induction motor is included in Section 2
both continuous-time and discrete-time systems. The other design approaches of PIDA
controller are presented in Section 3, and the comparison results are shown in Section 4
through MATLAB simulation, respectively. The article is concluded in Section 5.

2. Methodology. Figure 1 shows a general architecture of control system. The transfer
function of the required PIDA controller can be stated as

K(s) = Kp+
Ki

s
+Kds+Kas

2 =
Ki +Kps+Kds

2 +Kas
3

s
=

K(s+ a)(s+ b)(s+ c)

s
, (1)

where Kp, Ki, Kd, and Ka denote a proportional gain, an integral gain, a derivative gain,
and an acceleration gain, while K is controller gain and a, b, c are the zero of PIDA
controller respectively. From [2], the original design technique is aimed to satisfy the
desired specifications without trial and error in controller tuning procedure. Then, the
forward controller is employed to decrease the overshoot that is greater than usual, and
the controlled system structure becomes 2-DOF (two degree of freedom) systems. By
placing the zeros of the designed PIDA controller in the way of KM, the overall controlled
system is approximated as a standard second-order system. Then, the Posicast controller
is easily designed by reshaping the reference input from the maximum overshootMp which
depends on the damping ratio ζ only, and the first peak time tp as shown in Figure 2 [7].

Figure 1. General structure of control system

Figure 2. SIMULINK diagram



ICIC EXPRESS LETTERS, VOL.14, NO.10, 2020 995

2.1. Continuous-time framework. PIDA controller is designed for simplified induction
motor position control model that has been implemented in [1], and its transfer function
is

G(s) =
168.0436

s (s2 + 25.921s+ 168.0436)
=

168.0436

s(s+ 12.961 + j0.263)(s+ 12.961− j0.263)
. (2)

Then, the open-loop transfer function for the PIDA controllers K(s) and the controlled
plant G(s) is obtained as{

K(s)G(s) = K
(s+ a)(s+ b)(s+ c)KG

s2 · (s+ p1)(s+ p2)
, (3)

where KG = 168.0436 is a gain of plant, while p1,2 = −12.961± j0.263 are poles of plant,
respectively. By using KM, the zero of the proposed controller as a, b = −13.061± j0.263
are firstly assigned close to the pole of the controlled plant p1, p2, and then we can find
only c and K by using root locus angle and magnitude condition which are expressed as

]K(s)G(s) = ±(2k + 1)π, k = 0, 1, 2, . . . , (angle condition),

|K(s)G(s)| = 1 (magnitude condition).
(4)

The desired specifications for the controller design are usually specified in terms of
transient and steady-state response characteristics to a unit-step input, exhibited by a pair
of complex-conjugate dominant closed-loop poles sd± = −ζωn ± jωn

√
1− ζ2 as follows: Percent Overshoot (P.O.) = e

(
−ζπ

/√
1−ζ2

)
× 100% ≤ 5%,

settling time (ts) = − ln
(
0.02

√
1− ζ2

)/
ζωn ≤ 2 s, (±2%).

(5)

From computing (5), the damping ratio ζ = 0.69 and undamped natural frequency
ωn = 3.068649 rad/s are obtained. Hence, one of the dominant closed-loop poles is
located at sd = −2.118 + j2.221. The open-loop transfer function in (3) without (s + c)
at dominant poles sd and controller gain K is{

K(sd)G(sd)|without zc=(s+c) =
(sd + a)(sd + b)KG

s2d(sd + p1)(sd + p2)
= 18.163]92.518◦. (6)

Then the angle from the zero c of the proposed controller to dominant poles sd is

arg[c] = π − arg
(
K(sd)G(sd)|without zc=(s+c)

)
= 87.483◦. (7)

Hence, the location of the zero c of the proposed controller can be obtained as c = 2.215
and the controller gain K can calculate from the magnitude condition (4) as follows:

K =
|sd|2|sd + 12.961 + j0.263||sd + 12.961− j0.263|

168.0436|sd + 13.061 + j0.263||sd + 13.061− j0.263||sd + 2.215|
= 0.025. (8)

Finally, the PIDA controller transfer function can be expressed as

K(s) =
0.025(s+ 13.061 + j0.263)(s+ 13.061− j0.263)(s+ 2.215)

s
. (9)

Overshoot can be decreased by adding the zero c of the proposed controller to the open-
loop transfer function. The followed forward controller is introduced as Kf (s) = c/(s+ c)
[2] and then the overall system is approximated in standard form of second-order system
as

Y (s)

R(s)
≈ Kc168.0436

s2 + (K168.0436)s+ (Kc168.0436)
≈ 9.22

s2 + 2 · 0.685 · 3.037s+ 9.22

=
ω2
n

s2 + 2ζωns+ ω2
n

.

(10)
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From the response to a unit-step input of a standard second-order system, the maximum
overshoot can be expressed as

Mp = e−ζπ
/√

1−ζ2 = 0.052, ζ = 0.685. (11)

This maximum overshoot occurred at the peak time tp,

tp = π
/
ωn

√
1− ζ2 = 1.421 s, ωn = 3.037 rad/s. (12)

In order to achieve the response with no overshoot, the unit-step input will be rescaled
by the factor (1 +Mp) in two parts as follows:

1

1 +Mp

+
Mp

1 +Mp

e−tps = 1− Mp

1 +Mp

+
Mp

1 +Mp

e−tps. (13)

2.2. Discrete-time framework. In discrete-time design procedure, once an analog con-
troller in s-domain is obtained, then a digital controller is achieved by controller dis-
cretization. There are several ways for mapping from the s-plane to z-plane. The exact
conversion between the Laplace and z-plane is z = esT where T is the sampling time. How-
ever, this conversion involves a transcendental function and its transfer function cannot
be represented in form of a ratio of the polynomials. This makes it difficult to implement
such a control algorithm on a digital computer. Therefore, an approximate conversion
will be used instead. The trapezoidal approximation or bilinear transformation is used to
approximate in this research by substituting s = 2/T ((z − 1)/(z + 1)). Then the analog
controller in (9) can be discretized to obtain discrete-time controller K(z) as

K(z) = 25480

(
z − 0.974± j5.125× 10−4

)
(z − 0.996)

(z − 1)(z + 1)2
. (14)

The controlled plant in (2) is also discretized to be discrete-time plant G(z) as

G(z) =
1.638× 10−7(z + 1)3

(z − 1)
(
z − 0.974± j5.121× 10−4

) . (15)

Then, the open-loop transfer function can be approximated as

K(z)G(z) ≈ 4.174× 10−3(z − 0.996)(z + 1)

(z − 1)(z − 1)
. (16)

The closed-loop transfer function before applying the forward controller is

Y (z)

R(z)
≈ 4.174× 10−3(z − 0.996)(z + 1)

(z − 1)(z − 1) + 4.174× 10−3(z − 0.996)(z + 1)

≈ 4.174× 10−3(z − 0.996)(z + 1)

1.004z2 − 2z + 0.996
.

(17)

Here, the forward controller is Kf (z) = 0.0022(z − 1)/(z − 0.996). Then, the overall
transfer function for Kf (z) series (17) can be written in standard second-order system as

Y (z)

R(z)
≈ 9.225× 10−6(z + 1)2

1.004z2 − 2z + 0.996
. (18)

3. Other Methods. In this section, an analytic technique in [1], DA, the CF formulas
in [6] are considered as follows.
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3.1. Dorf’s approach. There are two characteristic equations to be equated, and the
first characteristic equation is

(s+ r)(s+R)(s+ q) (s+ q̂) = 0, (19)

where r, R, q and q̂ are desired root locations with specifications based on the design
criteria. The second characteristic equation is formed from the nominal control structure
of the plant in (2) and controller in (4). Hence, the second characteristic equation can be
written as

Factual(s) = 1 +K(s)G(s) = 1 +
K(s+ a)(s+ b)(s+ c)168.0436

s · s (s2 + 25.921s+ 168.0436)
= 0,

= s4 + [25.921 + 168.0436K]s3 + [168.0436 + 168.0436K(a+ b+ c)]s2 (20)

+ [168.0436K(ab+ bc+ ca)]s+ 168.0436Kabc.

For a given q, q̂ = −ζωn ± jωn

√
1− ζ2 = −2.1 ± j2.0, R = −13 and r = −30, then the

desired characteristic equation in (20) can be written as

Fdesired(s) = s4 + 47.2s3 + 579s2 + 1999.6s+ 3279.9 = 0. (21)

Equating coefficients of the same power between (20) and (21) will obtain K = 0.1266,
(a + b + c) = 19.317, (ab + bc + ca) = 93.9913 and (abc) = 154.1718 respectively. The
remained a, b and c can be obtained by considering the third order polynomial as follows:

(s+ a)(s+ b)(s+ c) = s3 + (a+ b+ c)s2 + (ab+ bc+ ca)s+ abc. (22)

Then, the designed PIDA controller can be obtained from the roots of (22) as follows:

K(s) =
K
(
s2 + 6.3184s+ 11.8605

)
(s+ 12.9986)

s
, K = 0.1266. (23)

3.2. Closed-form formulas. There are 2 cases for this method: the first case is continu-
ous-time and the second is discrete-time case.

3.2.1. Continuous-time case. In this article, the third-order plant G(s) in (2) is controlled
by the PIDA controller, and its transfer function is assumed as

G(s) =
b1s+ b0

s3 + a2s2 + a1s+ a0
, (24)

where a2, a1, a0 and b1, b0 are known coefficients from the controlled plant G(s).
Here, the actual characteristic equation is as follows:

Factual(s) = 1 +

[
Kps+Ki +Kds

2 +Kas
3
]
(b1s+ b0)

[s] (s3 + a2s2 + a1s+ a0)
,

Factual(s)

(1 +Kab1)
= s4 +

(a2 +Kdb1 +Kab0)

(1 +Kab1)
s3 +

(a1 +Kpb1 +Kdb0)

(1 +Kab1)
s2

+
(a0 +Kib1 +Kpb0)

(1 +Kab1)
s+

Kib0
(1 +Kab1)

.

(25)

The problem statement of PIDA controller design is to find the parameters Kp, Ki, Kd,
and Ka of the controller. The four closed-loop poles are the roots of actual characteristic
equation in (25) placing at the locations with exhibiting the output response as desired.
The desired locations of these closed-loop poles can be expressed by the characteristic
equation as follows:

Fdesign(s) =
(
s2 + 2ζωns+ ω2

n

)
(s+R)(s+ r) = 0

= (s+ q) (s+ q̂) (s+R)(s+ r),

= s4 + {σ + (r +R)} s3 + {ω2
n + σ(r +R) + rR} s2

+ {ω2
n(r +R) + σrR} s+ ω2

nrR,

(26)
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where σ = 2ζωn. For the real poles in the factor (s + R) and negligible pole (s + r), the
designer chooses these poles in the same region as shown in [1], for example, R ≥ ζωn and
r ≥ R to be faster than the poles in quadratic pair (s2 + 2ζωn + ω2

n) so that the response
is dominated by the second-order characteristic. Equating coefficients of the same power
between (25) and (26), then will have the equation which is a simple linear system and
can be written in vector-matrix form Ax = b as follows:

A =


0 0 b1 {b0 − b1 (σ + (r +R))}
b1 0 b0 −b1 {ω2

n + σ(r +R) + rR}
b0 b1 0 −b1 {ω2

n(r +R) + σrR}
0 b0 0 b1ω

2
nrR

 ,

b =


−a2 + (σ + (r +R))

−a1 + {ω2
n + σ(r +R) + rR}

−a0 + {ω2
n(r +R) + σrR}
ω2
nrR

 ,

xT =
[
Kp Ki Kd Ka

]T
.

(27)

From Section 3.1, variables r, R, q and q̂ are desired root locations with specifications
based on the design criteria. Hence, the formula for finding Kp, Ki, Kd, and Ka of the
PIDA controller is [

Kp Ki Kd Ka

]T
= A−1b. (28)

Comparison of controlled plant G(s) in (2) and transfer function G(s) in (24) is expressed
as {

G(s) =
168.0436

s3 + 25.921s2 + 168.0436s
≡ b1s+ b0

s3 + a2s2 + a1s+ a0
. (29)

Substitution a2, a1, a0, b1, b0 from (29), ζ = 0.69 and ωn = 3.069 rad/s from the desired
specifications to be designed in (5), r = 30 and R = 13 from experience in [1], into (27)
yields

xT =
[
12.2377 21.8543 2.4605 0.1268

]T
. (30)

Then, the PIDA controller’s transfer function designed by using the closed-form formula
can be written as follows:

K(s) = Kp +
Ki

s
+Kds+Kas

2 =
0.1268(s+ 3.2024± j1.7335)(s+ 12.9943)

s
. (31)

3.2.2. Discrete-time system. By using bilinear transform, the discrete-time PIDA con-
troller is easy to obtain from (31) as follows:

K(z) =

(
Kp +

Ki

s
+Kds+Kas

2

) ∣∣∣∣∣
s= 2

T (
z−1
z+1)

=
β3z

3 + β2z
2 + β1z + β0

(z − 1)(z + 1)(z + 1)
, where


β3

β2

β1

β0

 =
1

2T 2


2T 2 T 3 4T 8

2T 2 3T 3 −4T −24

−2T 2 3T 3 −4T 24

−2T 2 T 3 4T −8




Kp

Ki

Kd

Ka

 .

(32)

To obtain the observer canonical form (OCF), the controller’s transfer function can be
rewritten as:

K(z) =
M(z)

E(z)
=

Y (z)

U(z)
=

β3z
3 + β2z

2 + β1z + β0

z3 + α2z2 + α1z + α0

. (33)



ICIC EXPRESS LETTERS, VOL.14, NO.10, 2020 999

Then, the state-space model for the discrete-time controller is given by
 x1(k + 1)

x2(k + 1)

x3(k + 1)

 =

 0 0 −α0

1 0 −α1

0 1 −α2

 x1(k)
x2(k)
x3(k)

+

 β0 − α0β3

β1 − α1β3

β2 − α2β3

 e(k). (34)

With the sampling time T = 1/500 s/sample, the coefficients vector in (32) can be
obtained as follows[

β3 β2 β1 β0

]T
=

[
1.2927× 105 −3.8285× 105 3.7793× 105 −1.2435× 105

]T
.

(35)

Hence, an alternate form of the discrete-time controller is K(z) =
K(z − a)(z − b)(z − c)

(z − 1)(z + 1)(z + 1)
,

K = 1.2927× 105, c = 0.9749, a, b = 0.9933± j8.202× 10−4.

(36)

4. Comparison Results. The comparative simulation results are shown in Figure 3. For
continuous-time system (Figure 3(a)), all design approaches provided settling time less
than desired specification but overshoots of KM (thick dot line), DA (thin line) and CF
(thin dash line) exceed desired specification. Only KF (KM applying forward controller
as thick dash line) and proposed design approach KP (Kitti’s method applying forward
controller and Posicast as thick line) satisfy all desired specification but KP provided the
best result because there is no overshoot from this design approach. For discrete-time
system (Figure 3(b)), DA is not applicable for designing in discrete-time system. Only
KP and CF provided settling time less than desired specification, but CF has exceeded
overshoot compared to desired specification while KP has no overshoot.

Table 1. Performance with different design approaches

Continuous-time Discrete-time
Controller KM KF KP DA CF KM KF KP DA CF

Gain 0.025 0.025 0.025 0.127 0.127 0.0042 0.0042 0.0042 − 0.0212
Tr (sec.) 0.278 0.862 0.760 0.190 0.184 0.292 0.704 0.778 − 0.190
Ts (sec.) 1.581 1.939 1.825 1.460 1.379 3.050 2.119 1.335 − 1.513
P.O. (%) 21.3 4.9 − 8.9 9.4 20.3 5.5 − − 8.4

(a) Continuous-time (b) Discrete-time

Figure 3. Comparison results of the unit step response
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5. Conclusions. The PIDA controller which holds the patent by Dr. Dorf is designed
by KM both continuous-time and discrete-time. There are placing the zeros of the con-
troller in the way of this method, and then applying the forward controller. The overall
controlled system can be approximated as a standard second-order system and promptly
applied the Posicast controller in the last. Comparison with other methods found that
only KM, the Posicast controller can be applied both continuous-time and discrete-time
system for eliminating an overshoot. However, the performance of KM, DA and CF can
be improved to satisfy all desired specification by adjusting the controller gain. There
remain opportunities to explore and apply the proposed approach to nth order system. In
addition, further modelling of the analysis results for uncertain system is also the further
work.
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