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Abstract. By employing the concept of shape variable proposed, this paper is concerned
with the issue of shape asymptotic tracking for a class of linear systems, where the shape
asymptotic tracking is described by using the rigid motion. Considering the uncertainties,
model reference adaptive control approach is introduced into control design. Compared
with the existing results, the advantage of this paper is that the shape tracking control is
considered for multi-variables linear systems based on the model reference method with
the general model matching condition. By the Lyapunov theory, the shape asymptotic
tracking controller is synthesized, which ensures that the shape of the controlled linear
system can track asymptotically the shape of the reference system, and the boundedness
of all other signals in the closed-loop system is also guaranteed. Finally, a simulation
example is utilized to verify the effectiveness of the proposed controller.
Keywords: Model reference adaptive control, Linear systems, Shape variable, Shape
asymptotic tracking, Rigid motion

1. Introduction. Shape is a geometric concept to describe the curved contour of a curve,
which has been widely applied in the research of natural science and practical engineer-
ing [1–3]. In recent years, many research achievements based on shape concept have
emerged in the field of intelligent transportation [4], image retrieval [5], object detection
and recognition [6], remote sensing images [7], medical images [8] and so on. Utilizing the
concept of shape to pedestrian detection, Suhr and Jung [4] proposed a practical backover
warning system via a wide-angle rearview camera. Chuang et al. [8] presented an adaptive
texture-based active shape model method for segmenting the tendon and synovial sheath.
As can be seen, it is of great significance to research engineering issues by utilizing the
concept of shape.

Inspired by the above observations, the shape may be also employed in control theory
to describe the dynamical feature of the control system in the state space, and thus the
shape of the state trajectory can be controlled to track a given goal shape. In the past
decade, there were some research results to investigate the shape in control theory [9–16].
Wang and Han [10] proposed the control issue of the shape of the control system trajectory
curve and the reference trajectory curve shape congruence. Then, the two-dimensional
planar shape congruence control approach for a class of nonlinear systems with two-input
was presented by employing the property of the signed curvature. On the basis of the
differential geometry knowledge of plane curves and space curves, Huang et al. [12, 13]
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proposed the concept of shape synchronization in chaotic systems. The shape of the
driven system state trajectory and the shape of the response system state trajectory
complete synchronization was achieved by the presented controller, which was constructed
by utilizing the property of curvature. Considering the issue of the shape control for a
swarm of robots, Cheah et al. [16] developed the region-based shape controller, which can
form various shapes of the desired region by selecting the appropriate objective functions.
However, the issue of the shape of the control system trajectory is not considered in [16].
Meanwhile, the controllers are developed in [10,12,13] with the assumption that the system
state trajectory curve is regular. However, the presented approaches are not suitable for
the non-regular system state trajectory curve. Thus, how to remove the assumption that
the system state trajectory curve is regular is still an open issue remaining for further
research.
On the other hand, in order to improve the robustness of the developed control schemes,

the uncertainties of model matching should be considered. To handle such issue, the model
reference adaptive control (MRAC) has been developed, and many achievements have been
reported [17–25]. On the basis of Lyapunov stability theory, Cheng et al. [19] proposed
a model reference adaptive sliding mode control scheme for a class of multi-input and
multi-output (MIMO) dynamic systems with model mismatch and external interference,
and the state tracking of the control system was achieved. Based on the traditional
model reference adaptive method, Xie et al. [21] developed the composite anti-disturbance
model reference adaptive control strategy for a class of switched systems with parameter
uncertainties and multiple disturbances, and the state tracking of the control system was
achieved effectively. The above research achievements mainly focus on the issue of the
state tracking of the control system and the reference system. However, the shape tracking
the issue of the control system state trajectory and the reference system state trajectory
is not considered. Thus, how to employ the model reference adaptive control method of
the shape tracking control design of the control system and the reference system is an
issue worth further research.
Motivated by the above discussions, this paper is to describe the similarities and dif-

ferences in the shape of curves from the viewpoint of rigid body motion (rotation and
translation); thus, it avoids the assumption by which the curve is regular. Then, the
shape asymptotic tracking controller is developed for a class of linear systems. The main
contributions of this paper are summarized as follows.
1) Utilizing the property of rigid motion, the concept of shape asymptotic tracking is

proposed for the linear system based on the shape variables. Then, the model matching
condition of the traditional one is extended.
2) By using the model reference adaptive method, the adaptive controller is synthesized

such that the goal of shape asymptotic tracking is achieved effectively, and all signals in
the closed-loop system can be ensured to be bounded.
The remaining parts of this paper are organized as follows. The problem formulation

and preliminary results are provided in Section 2. The control design procedures of shape
asymptotic tracking controller and stability analysis are presented in Section 3. Section
4 provides the simulation example to verify the presented results. Finally, a conclusion is
given in Section 5.

2. Problem Formulation and Preliminary Results.

2.1. Problem formulation. A class of linear system is considered as follows:

ẋ(t) = Ax(t) +Bu(t) (1)

where x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn is the system state, and u(t) ∈ Rm denotes the

control input; A ∈ Rn×n is the system matrix and B ∈ Rn×m denotes the gain matrix.
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Definition 2.1. The state variables x1(t) and x2(t) of the control system (1) are called

shape variables, and its trajectory by r(t) = [x1(t), x2(t)]
T in the phase plane is named as

shape trajectory curve of the control system (1).

Remark 2.1. The shape variables can be regarded as the position coordinates or attitude
angle of the physical system, for instance, the position coordinates of automatic guided
vehicle system [26] and the attitude angle of inverted pendulum system [27].

Consider the reference system as follows:

ẋr(t) = Arxr(t) + Bryr(t) (2)

where xr(t) = [xr1(t), . . . , xrn(t)]
T ∈ Rn is the state of reference system, and yr(t) ∈ Rm

is the given bounded continuous input signal of the reference system; Ar ∈ Rn×n denotes
the system matrix and Br ∈ Rn×m is the gain matrix.

Definition 2.2. The state variables xr1(t) and xr2(t) of the reference system (2) are called

reference shape variables, and its trajectory by rr(t) = [xr1(t), xr2(t)]
T in the phase plane

is named as shape trajectory curve of the reference system (2).

Remark 2.2. The reference shape variables can be regarded as states of actual physical
reference system or the desired system’s states.

Definition 2.3. The shape trajectory curve of the control system (1) after a rigid motion
could be asymptotically congruent to the shape trajectory curve of the reference system (2),
that is, lim

t→∞
[rr(t)−Qr(t)− p1] = 0, where Q ∈ R2×2 and p1 ∈ R2 denote the orthogonal

matrix and constant vector respectively. It means that the shape asymptotic tracking of
the control system (1) and reference system (2) is achieved, and the controller is called as
the shape asymptotic tracking controller.

Remark 2.3. The orthogonal matrix Q not only represents the case of rigid motion, i.e.,
|Q| = 1, but also includes the case of |Q| = −1.

To achieve shape asymptotic tracking of the control system (1) and reference system
(2), the following matrix E ∈ Rn×n and vector P ∈ Rn are given:

E =

[
Q O2×(n−2)

O(n−2)×2 I(n−2)

]
(3)

P =

[
p1

p2

]
(4)

where Q ∈ R2×2 is the orthogonal matrix, and I(n−2) ∈ R(n−2)×(n−2) is the identity matrix;

O2×(n−2) ∈ R2×(n−2) and O(n−2)×2 ∈ R(n−2)×2 denote the zero matrices; p1 ∈ R2 and
p2 ∈ Rn−2 are the constant vectors. When n = 2, E and P denote E = Q ∈ R2×2 and
P = p1 ∈ R2, respectively.

With the matrix E, vector P and Definition 2.3, it is seen that if the following equality
is satisfied, the shape asymptotic tracking in Definition 2.3 can be obtained.

lim
t→∞

[xr(t)− Ex(t)− P ] = 0 (5)

Remark 2.4. From (5), it clearly shows that the shape asymptotic tracking of the shape
trajectory curve of the control system (1) and reference system (2) is achieved, while the
trajectory curve of the remaining states of the control system (1) and reference system
(2) tend to be congruent. Further, the general asymptotic tracking is a special case of the
shape asymptotic tracking, that is lim

t→∞
[xr(t)− x(t)] = 0 where E and P denote identity

matrix and zero vector, respectively.
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2.2. Main results. Considering the control system (1), let x̄ = Ex + P , and then the
following auxiliary system can be obtained:

˙̄x = Eẋ

= E (Ax+Bu)

= EA (E−1 (Ex+ P )− E−1P ) + EBu

= EAE−1x̄− EAE−1P + EBu

= Āx̄+ B̄u− C̄

(6)

where x̄(t) = [x̄1(t), . . . , x̄n(t)]
T ∈ Rn, Ā = EAE−1, B̄ = EB, C̄ = EAE−1P .

Therefore, the shape asymptotic tracking in Definition 2.3 can be transformed as
lim
t→∞

[xr(t)− x̄(t)] = 0.

Definition 2.4. Let the matrix S= (sij) ∈ Rg×l and W = (wij) ∈ Rq×v, the Krionecker
product of S and W [28], denoted by S⊗W , is defined as the partitioned matrix S⊗W =

s11W s12W · · · s1lW
s21W s22W · · · s2lW
...

...
...

sg1W sg2W · · · sglW

 where S ⊗W ∈ Rgq×lv.

Definition 2.5. Let the matrix S = (sij) ∈ Rg×l and vector si = [s1i, s2i, . . . , sgi]
T , i =

1, 2, . . . , l, the vec (•) operator transformation constructs a vector by stacking columns of

a matrix [28], that is, vec (S) = [s1, s2, . . . , sl]
T .

According to Definition 2.4 and Definition 2.5, the following property is given in [28],
and the following lemma is true.

Lemma 2.1.

vec (SΞW ) =
(
W T ⊗ S

)
vec (Ξ) (7)

where Ξ ∈ Rl×q.

To synthesize the control system design in Section 3, the following assumptions are
presented.

Assumption 2.1. The control signal of the reference system is bounded and continuous,
and the matrix Ar is Hurwitz stable.

Assumption 2.2. Considering the control system (1) and reference system (2), there are
existing matrix E ∈ Rn×n, vector P ∈ Rn, H ∈ Rm, matrix K∗ ∈ Rm×m and F ∗ ∈ Rm×n

satisfying the following model matching condition:

E−1Ar − AE−1 = BF ∗ (8)

E−1Br = BK∗ (9)

BH = AE−1P (10)

From Assumption 2.1, for any given positive definite matrix Φ, the following Lyapunov
equation has a unique positive definite matrix solution Θ:

AT
r Θ+ΘAr = −Φ (11)

Remark 2.5. With Lemma 2.1, Equations (8) and (9) can be transformed as follows:(
AT

r ⊗ In − In ⊗ A
)
vec

(
E−1

)
= (In ⊗B) vec (F ∗) (12)(

BT
r ⊗ In

)
vec

(
E−1

)
= (Im ⊗B) vec (K∗) (13)

The solutions are discussed as follows.
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1) If the matrix E is given, then Equations (12) and (13) can be regarded as linear
equations for vec (F ∗) and vec (K∗); thus, the sufficient condition for solutions to (12)
and (13) is shown as follows:{

rank
[(
AT

r ⊗ In − In ⊗ A
)
vec (E−1) , (In ⊗B)

]
= rank (In ⊗B)

rank
[(
BT

r ⊗ In
)
vec (E−1) , (Im ⊗B)

]
= rank (Im ⊗B)

(14)

Under the above condition, F ∗ and K∗ can be obtained by solving Equations (12) and
(13).

2) If F ∗ and K∗ are given, then Equations (12) and (13) can be regarded as the linear
equation for vec (E−1), and thus the sufficient condition for solutions to (12) and (13) is
shown as follows:

rank

[ (
AT

r ⊗ In − In ⊗ A
)

(In ⊗B) vec (F ∗)(
BT

r ⊗ In
)

(Im ⊗B) vec (K∗)

]
= rank

[ (
AT

r ⊗ In − In ⊗ A
)(

BT
r ⊗ In

) ]
(15)

Under the above condition, the matrix E satisfying the condition is obtained by solving
Equations (12) and (13).

3) By the given adjustable vector H and matrix E, then Equation (10) can be re-
garded as the linear equation for P , and the sufficient condition for solutions to (10)
is rank (BH,AE−1) = rank (AE−1). On this condition, P can be obtained by solving
Equation (10). Particularly, P = EA−1BH when the matrix A is invertible.

In order to make the proposed scheme more intuitive, a block diagram of model reference
shape asymptotic tracking control is presented in Figure 1.

r r r r r
x t A x t B y t

x t Ax t Bu t Ex P

K̂ t

F̂ t

H

r
y t

u t

z

x

r
x

x
+

Reference input

Reference system

Linear system

1
BH AE P

r
B

A B

E P

1
ˆ T T

r r
K C B yz

2
ˆ = TT

r
F BC xz

Figure 1. Diagram of model reference shape asymptotic tracking control

In Figure 1, K̂ = K̂(t) and F̂ = F̂ (t) denote the estimation matrices of K∗ and F ∗

in (8) and (9), and development procedures of adaptive laws
˙̂
K and

˙̂
F are presented in

Section 3.

3. Control Design and Stability Analysis. The control objective of this paper is to
synthesize the shape asymptotic tracking controller for the control system (1). With the
controller, shape asymptotic tracking of the control system (1) and reference system (2)
can be achieved, and all signals in the closed-loop system are ensured to be bounded.

To achieve the above control objective, the following shape asymptotic tracking con-
troller is proposed:

u(t) = K̂(t)yr(t) + F̂ (t)x̄(t) +H (16)
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where H is the adjustable vector satisfying (10). K̂ = K̂(t) and F̂ = F̂ (t) are the
estimation matrices of K∗ and F ∗ in (8) and (9).
The adaptive laws are proposed as follows:

˙̂
K = C1B

T
r ΘzyTr (17)

˙̂
F = C2B

T
r Θzx̄T (18)

where C1 = Γ1

(
(K∗)−1)T , C2 = Γ2

(
(K∗)−1)T . Γ1 ∈ Rm×m and Γ2 ∈ Rm×m are the

designed adjustable positive definite matrices.
The tracking error is denoted as z = xr − x̄. Then, with Equations (2), (6) and (16),

the following error system can be obtained:

ż = ẋr − ˙̄x

= Arz +
(
Ar − Ā− B̄F̂

)
x̄+

(
Br − B̄K̂

)
yr − B̄H + C̄

(19)

Further, the following result can be obtained with Assumption 2.2:

ż = Arz +Br(K
∗)−1

(
F ∗ − F̂

)
x̄+Br(K

∗)−1
(
K∗ − K̂

)
yr

= Arz +Br(K
∗)−1F̃ x̄+Br(K

∗)−1K̃yr

(20)

where K̃ and F̃ denote the estimation errors of K̃ = K∗−K̂ and F̃ = F ∗−F̂ , respectively.

Theorem 3.1. Consider the control system (1) and the reference system (2), if Assump-
tions 2.1 and 2.2 are satisfied, the shape asymptotic tracking controller (16) with the
adaptive update laws (17) and (18) can ensure that the shape of the control system (1)
tracks asymptotically the shape of the reference system (2), and all other signals in the
closed-loop system are bounded.

Proof: Consider the following Lyapunov function candidate:

V =
1

2

[
zTΘz + tr

(
K̃TΓ−1

1 K̃
)
+ tr

(
F̃ TΓ−1

2 F̃
)]

(21)

The time derivative of V is given by:

V̇ =
1

2

[
żTΘz + zTΘż + tr

(
˙̃K
T

Γ−1
1 K̃ + K̃TΓ−1

1
˙̃K

)
+ tr

(
˙̃F
T

Γ−1
2 F̃ + F̃ TΓ−1

2
˙̃F

)]
(22)

Substituting (19) into (22) yields:

V̇ =
1

2

[
zT (ArΘ+ΘAr) z

]
+ zTΘBr(K

∗)−1F̃ x̄+ zTΘBr(K
∗)−1K̃yr

+
1

2
tr

(
˙̃K
T

Γ−1
1 K̃ + K̃TΓ−1

1
˙̃K

)
+

1

2
tr

(
˙̃F
T

Γ−1
2 F̃ + F̃ TΓ−1

2
˙̃F

)
=

1

2

[
zT (ArΘ+ΘAr) z

]
+ tr

[(
yrz

TΘBr(K
∗)−1 − ˙̂

K
T

Γ−1
1

)
K̃

]
+ tr

[(
x̄zTΘBr(K

∗)−1 − ˙̂
F

T

Γ−1
1

)
F̃

]
(23)

Substituting (17) and (18) into (23), it follows that:

V̇ = −1

2
zTΦz (24)

The result (24) shows that closed-loop system is stable. Thus, z(t), K̂(t) and F̂ (t) are
bounded. The boundedness of the state vector xr can be obtained from Assumption 2.1.
Then, the state vector x can be bounded, and the boundedness of the control signal u
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can be obtained from (16). Hence, the boundedness of all signals in the closed-loop is
guaranteed. From (19), this further implies that ż is bounded. According to the Barbalat
Lemma [29], lim z

t→∞
(t) = 0 can be obtained. Theorem 3.1 is established.

4. Simulation Study. In this section, a numerical example is presented to show the
effectiveness of the proposed controller. The Matlab software is used for simulation. The
matrices A, B, Ar, Br and the vector H are generated randomly by the Matlab program,
where the vector H satisfies Assumption 2.2. Then, reference system input is chosen

as yr =
[
a sin(t) b cos(t) c sin(t)

]T
, where the parameters a, b and c are generated

randomly in Matlab.
According to method 1) in Remark 2.5, the procedures of solving matrices K∗ and F ∗

are shown as follows.
(I) Giving the matrix E, generate matrices A, B, Ar, Br and the vector H randomly.

Then, utilize Equation (14) to determine whether Equations (12) and (13) satisfy the
sufficient condition for solutions. If it is not satisfied, generate the matrices again till the
sufficient condition for solutions is satisfied, else continue to (II);

(II) Utilizing the matrices A, B, Ar, Br and the vector H, solve the matrix Equations
(12) and (13), and then obtain the matrices K∗ and F ∗;

(III) With the vector H and matrix E, determine whether Equation (10) satisfies the
sufficient condition for solutions. If it is not satisfied, return to (I), else solve Equation
(10) to obtain the vector P .

Simulation results are shown in Figures 2-6, where Figure 2 shows the shape trajectory
curve of the control system and the reference system, Figure 3 shows the trajectory of
tracking error, Figure 4 shows the trajectory of control signals, Figure 5 and Figure 6
show the trajectories of adaptive control signals.

From Figure 2 and Figure 3, it clearly shows that the shape trajectory curves of the
control system and the reference system are asymptotically congruent, while the position
is different. It means that the shape trajectory curves of the control system and the shape
trajectory curves of the reference system can achieve asymptotic congruence through a
suitable rigid motion, namely, shape asymptotic tracking of the control system and the
reference system is achieved. Then, from Figure 4 to Figure 6, it shows that control
signals and adaptive laws are bounded. The above simulation results show that the

Figure 2. System state phase curve
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Figure 3. Shape tracking error time response curve

Figure 4. Control signal time response curve

Figure 5. Adaptive law K̂ time response curve
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Figure 6. Adaptive law F̂ time response curve

proposed shape asymptotic tracking controller can achieve shape asymptotic tracking of
the shape trajectory curves of the control system and the reference system effectively.

5. Conclusions. In this paper, the model reference based shape asymptotic tracking has
been researched for a class of linear system. The results show that the shape asymptotic
tracking controller can effectively achieve the shape asymptotic tracking of the control
system and the reference system under a suitable model matching condition. Simultane-
ously, all other signals in the closed-loop system can be guaranteed bounded. Consider
most nonlinear system can be approximated as linear systems; thus, the developed results
are also effective for nonlinear system. It is worth noting that the traditional control ap-
proaches are not suitable for shape asymptotic tracking control of linear systems, which
will be a new research topic.
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