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Abstract. In this paper, a distributed fault estimation observer design is proposed for a
class of multi-agent systems with sensor faults. Through the equivalent transformation,
an augmented multi-agent system is constructed. Then a distributed fault estimation
observer is proposed to achieve asymptotic estimation for sensor faults. Furthermore,
the observer gain matrix is calculated based on L2 − L∞ performance index. Finally,
simulation results are presented to show effectiveness of the proposed techniques.
Keywords: Fault diagnosis, Fault estimation, Sensor faults, Multi-agent systems

1. Introduction. Over the past three decades, due to the critical role of fault diagnosis
and fault-tolerant control technology in improving the safety and reliability of control
systems, they have achieved unprecedented rapid development and a large number of
research results have emerged. Once the system has actuator, sensor or component faults,
it will change the behavior of the system and even lead to system instability. The fault
diagnosis module can detect the time when the fault occurs and determine the damage
level of the fault, while fault-tolerant control can compensate for the impact of the fault
and recover the performance of the system [1-5].

Due to the strong application background of multi-agent technology, it has been rapidly
developed, such as formation flying of unmanned aerial vehicles, and multi-robot collab-
orative control [6-8]. Due to the information interaction between each subsystem, once a
certain system fails, it will inevitably affect the performance of other subsystems through
the topology [9-12]. In [13], the problem of fault detection and isolation was dealt with
for discrete-time Markovian Jump Linear Systems and a geometric property related to
the unobservable subspace of Markovian Jump Systems was considered. In [14], a robust
fault estimation method using sliding mode observers was proposed for a class of multi-
agents systems with actuator faults. In [15], the distributed fault detection and isolation
problem for a class of second-order discrete-time multiagent systems was studied based on
an optimal robust observer approach. In [16], the issue of fault detection was presented
for high-order multi-agent systems with disturbances based on the unknown input ob-
server design. Although many research results have been achieved on the fault diagnosis
of multi-agent systems, the robust asymptotic estimation of time-varying sensors has not
been studied in depth.

In this work, a distributed fault estimation observer was proposed for linear multi-
agent systems with sensor faults. Main contributions of this manuscript are as follows: 1)

DOI: 10.24507/icicel.14.02.129

129



130 K. ZHANG, B. JIANG, X.-G. YAN AND J. XIA

for each subsystem with sensor faults, an augmented system is constructed; 2) a robust
asymptotic estimation method of sensor faults is proposed for multi-agents.
The rest of this paper is organized as follows. System description and problem statement

are given in Section 2. In Section 3, distributed fault estimation observer and fault
estimator are constructed. Simulation results are presented in Section 4 to illustrate the
effectiveness of the distributed design strategy. Section 5 concludes this manuscript.

2. Preliminaries and System Description.

2.1. Preliminaries. Consider a group of N agents. Denote a directed graph G =
(V , ε,A) to be a communication graph among N agents, where V = (v1, v2, . . . , vN) repre-
sents the set of agents, ε = V ×V is the set of edges or arcs, and A = [aij] ∈ RN×N is the
associated adjacency matrix. In this paper, the graph is assumed to be time-invariant,
i.e., A is constant. An edge rooted at agent vj and ended at agent vi is denoted by (vj, vi),
which means information can flow from agent vj to agent vi. aij is the weight of edge
(vj, vi) and aij = 1 if (vj, vi) ∈ ε, otherwise aij = 0. Agent vj is called a neighbor of agent
vi if (vj, vi) ∈ ε. The set of neighbors of agent vi is denoted as Ni = {j|(vj, vi) ∈ ε}. De-
fine the in-degree matrix as D = diag{di} ∈ RN×N with di =

∑
j∈Ni

aij and the Laplacian
matrix as L = D − A.
The edges in the form of (vi, vi) are called loops. G = diag{gi} ∈ RN×N is denoted as

a loop matrix and has at least one diagonal item being 1.

2.2. System description. Consider the following multi-agent with sensor faults{
ẋi(t) = Axi(t) +Bui(t) +Dωi(t)

yi(t) = Cxi(t) + Efi(t)
(1)

where xi(t) ∈ Rn, ui(t) ∈ Rm and yi(t) ∈ Rp are the state, the input and the output of the
ith agent respectively. ωi(t) ∈ Rd is the external disturbance and fi(t) ∈ Rr represents the
sensor fault. The sensor fault is bounded. A, B, C, D and E are constant real matrices of
appropriate dimensions. It is supposed that matrix E is of full rank and the pair (A,C)
is observable.
From (1), the following augmented system description can be obtained with the purpose

of asymptotic sensor fault estimation:
[
In 0
0 0

] [
ẋi(t)

ḟi(t)

]
=

[
A 0
0 0

] [
xi(t)
fi(t)

]
+

[
B
0

]
ui(t) +

[
D
0

]
ωi(t)

yi(t) =
[
C E

] [ xi(t)
fi(t)

] (2)

The augmented variable and matrices are denoted as below:

x̄i(t) =

[
xi(t)
fi(t)

]
, S =

[
In 0
0 0

]
, Ā =

[
A 0
0 0

]
, B̄ =

[
B
0

]
, D̄ =

[
D
0

]
,

C̄ =
[
C E

]
.

It follows: {
S ˙̄xi(t) = Āx̄i(t) + B̄ui(t) + D̄ωi(t)

yi(t) = C̄x̄i(t)
(3)

Remark 2.1. The augmented system (3) is equivalent to the original system (1). For
system (3), if x̄i(t) can be estimated robustly asymptotically, accurate estimation of sensor
fault can be obtained.
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3. Main Results. In order to estimate sensor faults, the following observer is construct-
ed: {

S ˙̄̂xi(t) = Āˆ̄xi(t) + B̄ui(t)− R̄ξi(t)− F̄
(
˙̂yi(t)− ẏi(t)

)
ŷi(t) = C̄ ˆ̄xi(t)

(4)

where ˆ̄xi(t) ∈ Rn+r and ŷi(t) ∈ Rp are the state and output of the observer, respectively.

R̄ ∈ R(n+r)×p and F̄ ∈ R(n+r)×p are observer gain matrices to be designed, and F̄ =

[
0
F

]
with F ∈ Rr×p. ξi(t) ∈ Rp is the relative output estimation error of the ith node and is
defined as follows

ξi(t) =
∑
j∈Ni

aij ((ŷi(t)− yi(t))− (ŷj(t)− yj(t))) + gi (ŷi(t)− yi(t))

Remark 3.1. Since matrix S in (4) is singular, it is not convenient to analyze and design

the fault estimation observer. So the term F̄
(
˙̂yi(t)− ẏi(t)

)
is added in (4) to handle this

problem, which is helpful for analysis and design for the proposed design method.

Denote the error vector:
ēi(t) = ˆ̄xi(t)− x̄i(t)

then it derives (
S + F̄ C̄

)
˙̄ei(t) = Āēi(t)− R̄ξi(t)− D̄ωi(t) (5)

According to

S + F̄ C̄ =

[
In 0
0 0

]
+

[
0
F

] [
C E

]
=

[
In 0
FC FE

]
it is seen that since matrix E is of full-column rank, we can choose a suitable matrix F
such that FE is nonsingular square matrix. It is concluded that S is a full rank matrix.

In the view of the global system, we denote global vectors:

ē(t) =
[
ēT1 (t) ēT2 (t) · · · ēTN(t)

]T
,

ef (t) =
[
eTf1(t) eTf2(t) · · · eTfN(t)

]T
,

ω(t) =
[
ωT
1 (t) ωT

2 (t) · · · ωT
N(t)

]T
,

where efi(t) = f̂i(t)− fi(t), then the global error dynamics is(
IN ⊗ (S + F̄ C̄)

)
˙̄e(t) =

(
IN ⊗ Ā

)
ē(t)−

(
(L+G)⊗ R̄C̄

)
ē(t)−

(
IN ⊗ D̄

)
ω(t)

=
(
IN ⊗ Ā− (L+G)⊗ R̄C̄

)
ē(t)−

(
IN ⊗ D̄

)
ω(t)

(6)

where ⊗ is kroneck product.
Further, we denote:

M̄ = IN ⊗
(
S + F̄ C̄

)
and the error dynamic equation becomes{

˙̄e(t) = M̄−1
(
IN ⊗ Ā− (L+G)⊗ R̄C̄

)
ē(t)− M̄−1

(
IN ⊗ D̄

)
ω(t)

ef (t) =
(
IN ⊗ Ī T

r

)
ē(t)

(7)

where Īr =

[
0
Ir

]
.

Theorem 3.1. Given a circular region D(α, τ) with center α+ 0j and radius τ , and an
L2 − L∞ performance index γ. If there exist a symmetric positive definite matrix P̄ ∈
R(n+r)×(n+r) and a matrix Ȳ ∈ R(n+r)×p such that the following conditions are satisfied:[

IN ⊗
(
−P̄

)
IN ⊗

(
P̄ Ā

)
− (L+G)⊗

(
Ȳ C̄

)
− α

(
IN ⊗ P̄

)
M̄

∗ −τ 2M̄T
(
IN ⊗ P̄

)
M̄

]
< 0 (8)
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φ −M̄T

(
IN ⊗ P̄ D̄

)
∗ −γI

]
< 0 (9)[

−M̄T
(
IN ⊗ P̄

)
M̄ IN ⊗ Īr

∗ −γI

]
< 0 (10)

where φ = M̄T
(
IN ⊗

(
P̄ Ā

)
− (L+G)⊗

(
Ȳ C̄

))
+

(
IN ⊗

(
P̄ Ā

)
− (L+G)⊗

(
Ȳ C̄

))T
M̄ ,

then the eigenvalues of M̄−1
(
IN ⊗ Ā− (L+G)⊗ R̄C̄

)
belong to D(α, τ) and the error

dynamic equation satisfies L2 − L∞ performance ∥ef (t)∥∞ < γ ∥ω(t)∥2.
Proof: Condition (8): For the given circular region D(α, τ) and Lyapunov matrix

M̄T
(
IN ⊗ P̄

)
M̄ , condition (8) can be obtained directly according to regional pole re-

placement lemma [5].
Conditions (9)-(10): Consider the following Lyapunov function

V (t) = ēT(t)M̄T
(
IN ⊗ P̄

)
M̄ē(t) (11)

The following performance index J1(t) is denoted as:

J1(t) = V (t)− γ

∫ t

0

ωT(s)ω(s)ds (12)

Under zero initial condition, one gets

J1(t) =

∫ t

0

V̇ (s)− γωT(s)ω(s)ds (13)

Further,
V̇ (t)− γωT(t)ω(t)

≤ ēT(t)M̄T
(
IN ⊗

(
P̄ Ā

)
− (L+G)⊗

(
Ȳ C̄

))
ē(t)

+ ēT(t)
(
IN ⊗

(
P̄ Ā

)
− (L+G)⊗

(
Ȳ C̄

))T
M̄ē(t)

− 2ēT(t)M̄T
(
IN ⊗

(
P̄ D̄

))
ω(t)− γωT(t)ω(t)

=

[
ē(t)
ω(t)

]T [
φ −M̄T

(
IN ⊗

(
P̄ D̄

))
∗ −γI

] [
ē(t)
ω(t)

]
(14)

If condition (9) holds, then J1(t) < 0 and V (t) < γ ∥ω(t)∥22.
We denote the performance index J2(t)

J2(t) = eTf (t)ef (t)− γV (t)

= ēT(t)
(
IN ⊗ ĪrĪ

T
r

)
ē(t)− γēT(t)M̄T

(
IN ⊗ P̄

)
M̄ē(t)

= ēT(t)
(
IN ⊗ ĪrĪ

T
r − γM̄T

(
IN ⊗ P̄

)
M̄

)
ē(t)

(15)

Based on the Schur complement lemma,
(
IN ⊗ ĪrĪ

T
r

)
−γM̄T

(
IN ⊗ P̄

)
M̄ < 0 is equivalent

to condition (10). If condition (10) is satisfied, then eTf (t)ef (t) < γV (t).
Therefore, if conditions (9) and (10) hold, the error dynamic Equation (7) satisfies

L2 − L∞ performance ∥ef (t)∥∞ < γ ∥ω(t)∥2. �
The observer gain has been calculated from Theorem 3.1. Since matrix S is singular in

fault estimation observer (4), the following equivalent form can be derived:

S ˙̄̂xi(t) = Āˆ̄xi(t) + B̄ui(t)− R̄ξi(t)− F̄ C̄ ˙̄̂xi(t) + F̄ ẏi(t) (16)

Further, one obtains(
S + F̄ C̄

) ˙̄̂xi(t) = Āˆ̄xi(t) + B̄ui(t)− R̄ξi(t) + F̄ ẏi(t) (17)

It follows from the fact S + F̄ C̄ is nonsingular{
˙̄̂xi(t) =

(
S + F̄ C̄

)−1 (
Āˆ̄xi(t) + B̄ui(t)− R̄ξi(t) + F̄ ẏi(t)

)
f̂i(t) = ITr ˆ̄xi(t)

(18)
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Therefore, the online sensor fault estimation can be obtained from observer (18).

4. Simulation Results. Consider the following multi-agent systems with sensor faults{
ẋi(t) = Axi(t) +Bui(t) +Dωi(t)
yi(t) = Cxi(t) + Efi(t)

where the state xi(t) contains horizontal velocity, vertical velocity, pitch rate, and pitch
angle. The control ui(t) is collective pitch control and longitudinal cyclic pitch control.
And

A =


−9.9477 −0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 −24.4221
26.0922 2.6361 −4.1975 −19.2774

0 0 1 0

 , B =


0.4422 0.1761
3.5446 −7.5922
−5.5200 4.49

0 0

 ,

C =

 1 0 0 0
0 1 0 0
0 0 0 1

 , E =

 1 0
0 1
0 0

 , D =


0.1
0.1
0.1
0.1

 .

We consider the following directed graph illustrated in Figure 1.

Figure 1. Communication topology

Moreover, the first node contains a loop. For such directed communication topology,
we can get the matrices

L =

 1 −1 0
0 1 −1
−1 0 1

 , G =

 1 0 0
0 0 0
0 0 0


Further, we choose

F =

[
1 0 0
0 1 0

]
such that we obtain FE =

[
1 0
0 1

]
and the augmented matrix

(
S + F̄ C̄

)
is nonsingular.

Under the regional pole constraint D(−5, 5) and solving conditions of Theorem 3.1, one
derives γ = 0.5093 and observer gain matrix:

R̄ =


0.0011 −0.4040 1.0120
−0.0009 1.8717 10.8967
−0.0163 2.7899 −1.0042
−0.0005 −0.2065 3.3341
2.8330 0.0037 0.0000
0.0050 2.9231 −0.0002


In simulation, it is assumed that there are sensor faults in the first and second agents,
that is

f11(t) =

{
0, 0s ≤ t ≤ 20s
0.5

(
1− e−0.3(t−20)

)
, 20s < t ≤ 50s

, f12(t) = 0
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f21(t) =

{
0, 0s ≤ t ≤ 25s
0.5 sin(t− 25), 25s < t ≤ 50s

, f22(t) = 0

f31(t) = 0, f32(t) = 0

Simulation results are illustrated in Figure 2 and Figure 3. From simulation results, we
can see that the proposed design method can achieve an accurate estimation of sensor
faults, which has verified the effectiveness of the presented estimation techniques.

Figure 2. Fault estimation of f11(t)

Figure 3. Fault estimation of f21(t)

5. Conclusions. In this work, a distributed fault estimation observer design has been
proposed to estimate sensor faults asymptotically. Using L2 − L∞ performance index,
observer gain matrix is calculated in terms of linear matrix inequalities. Finally, simula-
tion results are given to illustrate effectiveness of the proposed stagey. The issue of fault
diagnosis for multi-agent systems with switching topologies will be studied in our future
work.
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