
ICIC Express Letters ICIC International c⃝2020 ISSN 1881-803X
Volume 14, Number 2, February 2020 pp. 153–162

DISTRIBUTED TEAMS IN GLOBAL SOFTWARE ENGINEERING
EDUCATION: PROJECT-BASED APPROACHES IN BACHELOR

AND MASTER DEGREE CLASSES

Daniel Moritz Marutschke1, Victor Kryssanov2

and Patricia Brockmann3

1College of Global Liberal Arts
Ritsumeikan University

2-150 Iwakura-cho, Ibaraki, Osaka 567-8570, Japan
moritz@fc.ritsumei.ac.jp

2College of Information Science and Engineering
Ritsumeikan University

1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
kvvictor@fc.ritsumei.ac.jp

3Computer Science Department
Technical University Nuremberg Georg Simon Ohm

Keßlerplatz 12, Nuremberg 90489, Germany
patricia.brockmann@th-nuernberg.de

Received August 2019; accepted November 2019

Abstract. Software engineers in the twenty-first century increasingly need to learn dis-
tributed project management and intercultural skills to communicate in international
teams. To achieve productive education, software engineering education should reflect
real world scenarios as much as possible. In many cases, this proves to be too costly, or
neither the infrastructure, nor environment or team culture exists. Recent advances in
technology, both hardware and software solutions, however, are facilitating virtual and
collaborative teaching and learning environments. In this paper, the authors present a
series of cooperative and distributed virtual courses. Implications of new technology and
established teaching methodologies are addressed and compared for a bachelor and master
degree course in global software engineering. Insights from students questionnaires are
gathered and proposed for course improvement.
Keywords: Software engineering, Smart education, Distributed, Project-based

1. Introduction. The difficulties of education revolving global software engineering (GS-
E) are well known with a growing field of research. Establishing effective courses is very
difficult and makes research and comparisons complicated. The authors have a combined
experience of more than 20 years in (global) software engineering, both practical and
academic [1, 2, 3, 4]. With a couple of years of collaboration, they formulate findings in
undergraduate and graduate level education. Especially in distributed teams, comparative
studies lack a wider understanding of conclusions derived from local software engineering
teams. Also the subjective evaluation by students and their change thereof after a project
is finished are compared. Particularly cultural differences, over-estimation of personal
skills, and the importance of trust between teams and team members are comparative to
previous findings in software engineering.

To allow for a meaningful education in global software engineering, known factors are
implemented in the teaching and learning process. A two-part questionnaire was collab-
oratively developed to tease out changes or evolution of perception and assessment by
students. A detailed view of the questionnaire and its results are described in Section

DOI: 10.24507/icicel.14.02.153

153



154 D. M. MARUTSCHKE, V. KRYSSANOV AND P. BROCKMANN

3.2. Another framework that is guiding the teaching close to industry standards is the
implementation of CDIO stages (conceive-design-implement-operate). Regardless of local
or distributed software development, the mechanisms of a modern product lifecycle have
to be understood. Frank et al. analyze a four-year CDIO sequence [5], Crawley et al.
investigate an updated curriculum for engineering education [6], and Jiang and Lin write
about a CDIO inclusion in project-based learning [7].
A further pillar of global software engineering education is the teaching and learning

in the form of projects and problem-solving. Research suggests, that the experience from
a practically-oriented syllabus and real-world project-based learning for undergraduate
courses and problem-based learning for graduate courses are necessary for effective learn-
ing [5, 7, 8, 9, 10, 11, 12, 13]. In many instances, budgetary restraints and the inherent
complexity of such projects pose high thresholds. However, with students lacking access
to this kind of education, a serious deficit arises. Such challenges are deemed most im-
portant to prepare for a world that is growing closer in professional environments and
interactions.
The paper summarizes experiences of two recent global software engineering courses –

taught on an undergraduate and graduate level – at the Ritsumeikan University in Japan
and the Technical University Nuremberg Georg Simon Ohm. The authors provide an
insight in global software engineering education practices and how levels in bachelor and
graduate courses reflect maturity levels by polling for GSE-relevant questions.
Following this introductory part, the paper is divided into further three parts. In

Section 2, teaching goals and objectives are described.
The project overview is given, including the educational objectives that guided the

course and how the project was organized. In Section 3, the main observations are reflected
by viewpoints of the two educational institutions – educational professionals and students
– with discussions about general and specific difficulties accompanying the project and
future propositions.
We provide our insights from questionnaire findings and an overall discussion. Lastly,

we give concluding remarks in Section 4.
State of the art software engineering is heavily based on online collaborative tools.

Agile information system development, cloud-based and often version-controlled code,
documents, and documentation are common place [14, 15]. In distributed collaborative
projects, a focus is placed on document sharing and virtual team meetings, usually done
by video-chats. Modern IP-based professional video conferencing systems far outperform
popular softwares such as Skype, Google Hangout, or FaceTime in terms of video quality,
connection stability, and often multiple camera angles with speaker tracking capabilities.
Nonetheless the main reason for failed projects still lies in traditional metrics, such as

sloppy requirements elicitation, unprofessional project management, and work-climate, to
name a few. Many approaches such as Scrum1 and Kanban2 alleviate the most severe
failings. However, due to the intricacy of modern software projects, other factors cannot
be anticipated without proper training.

2. Teaching Global Software Engineering. This section details three parts – edu-
cational objectives: software engineering in general; in the context of globalization and
intercultural skills; with a student-centered teaching method.
The goal of global software engineering education is to teach students the skills necessary

to address the difficulties in their future roles as software engineers in distributed teams.
Fairly large-scale, systematic reviews of the literature to identify main competences for

1Scrum is one of the most used subset of agile project management. Scrum consists of development
cycles called “sprints” and is set for a lightweight framework.

2Named after the message board system at Toyota’s manufacturing, the kaizen-inspired continuous
improvement strategy was implemented into general project management.



ICIC EXPRESS LETTERS, VOL.14, NO.2, 2020 155

global software engineers, as well as research regarding socio-cultural differences and the
need to shift educational goals have been published [8, 16, 17, 18]. Additional skills which
students should learn are:

1) Software Engineering Techniques: Understand key problems in distributed software
system development, agile development methods, UML, good programming practices;

2) Technical Tools: Distributed collaboration tools such as cloud platforms, video confer-
encing and project management tools;

3) Organizational: Distributed, agile project management, self-organization in manage-
ment methods;

4) Conceptual: Critical thinking, logical reasoning to draw conclusions, separating soft-
ware engineering from tangential fields such as business management;

5) Intercultural: Communication with project members from different countries, reflecting
on ones own cultural perspective;

6) Ethics: Respect for all team members, stakeholders, and the environment.

The skills above enable the students to model, develop, and document a modest-sized
software product while working in an international virtual team. They should be able to
apply fundamental computer science concepts and modern IT technologies and tools to
designing and implementing software systems. On a more general basis, students should
gain the ability to model a software product’s properties and make arguments for specific
properties using formal and informal logical reasoning. Tacit knowledge is best acquired
by practical exercises to appreciate cooperative team skills, ethical behavior, and discuss
contributions and other issues with team members in a professional manner. This includes
also the recognition of the cultural diversity of the modern professional environment and
the social responsibility of individuals working in a multinational distributed team.

Class structure and project organization. The authors from Germany and Japan
conducted a joint master-level course. One author from Japan leads an bachelor-level
project based learning (PBL) group between Japan and Sri Lanka. One author from
Germany leads a bachelor-level course in introduction to information systems. Due to
the data collected, comparisons are drawn between perceptions by the students before
and after a project3 . The following discussions will focus on those countries and mainly
referenced unless otherwise necessary.

All teams were geographically distributed with locations in Germany and Japan. The
teams were distributed as shown in Table 1. The students in Germany were mostly
homogeneous (German, non-native English speakers), whereas teams in Japan were het-
erogeneous, with students from China, Korea, Vietnam, the United States, Thailand, and
other.

Table 1. Number of students in each course

Germany Japan
Master-level 9 5
Bachelor-level 19 (15)* 16

*2nd year (3rd year), number of students before and after internship

Teams were intentionally designed to be distributed within teams. Each team was
made up of half of its members from Japan, the other half from Germany. This requires
considerably more international communication than if each team is co-located at the
same site [19]. On the Japanese side, we let the students form their own groups with two
important conditions: 1) friends should not be in the same group and 2) nationalities
must be as evenly distributed as possible. Due to the skew in countries, some groups

3In the undergraduate course in Germany, the questionnaires were conducted before and after a
semester-long internship.



156 D. M. MARUTSCHKE, V. KRYSSANOV AND P. BROCKMANN

inevitably had several team members of the same nationality, which led to instances of
inner-team incoherence, as reported from the students.
The cross-site project teams in the master-level course were assigned the task to develop

a secure e-voting system. The project owner had previous experience with the e-voting
system in Switzerland and expert knowledge of e-voting systems in other countries, such
as Estonia. Each student group conducted their own requirements engineering, designed
and developed a prototype their e-voting system. The course included a guest lecture from
a world-leading expert in e-voting and cyber-security. One team conducted initial tests
of their prototypes with an eye-tracking system to optimize their website user interface.
Another team implemented blockchain processes into their voting procedure.
Distributed teams in the undergraduate level were instructed to create a system that

benefits higher education using a wireless camera and image recognition algorithms. Two
teams approached this in different ways, conceptualizing a system for automatic atten-
dance logging and an autonomous robot to identify visitors to a designated room.
The one semester arrangement for both master and bachelor level education followed

previous structures in global software engineering, with slight modifications to ensure
better audio quality and communication. Most classes were introduced by a short lecture
in Japan, joined by the German group via Skype. The setup done with Skype as the video-
conferencing system reflects trust establishment described in a 2016 paper by Hussain and
Blincoe [20]. Slides were shared so students could remotely better follow the lecture. The
rest of the time was used for team discussions and feedback with the instructors. The
graduate course in Japan was conducted with two semester-hours, the undergraduate
course with four semester-hours. Both had a mandatory 15 weeks semester. The graduate
course in Germany was conducted with four semester-hours. The undergraduate course
in introduction to information systems was conducted during the 2nd and 3rd year (4th
and 6th semester).
During the master-level global software engineering course in Germany and Japan,

questionnaires were handed out in the beginning and at the end of the semester. These
surveys were used to poll students about their changed perspective to several markers
related to software development within distributed teams. The same markers were polled
in the undergraduate PBL course4 . A subset of these markers was surveyed before and
after a mandatory internship for undergraduate students in Germany5 .

3. Results and Discussion. The results and discussion in this section takes into ac-
count the successfully concluded projects, unsuccessful endeavors, difficulties, and lessons
learned over a decade worth of global software engineering education. Countries with
previous collaborations include Germany, Japan, Russia, Japan, Mongolia, and Mexico6

[1, 2, 3, 4].

3.1. Methodology. Students on both sides were asked to fill out an anonymous ques-
tionnaire. The students were surveyed at the beginning of the semester and at the end of
the semester. Questions were polling the students on their opinions about which factors
were most important for global software engineering.
The following methodology was used to compare subjective factors in global software

engineering:

1) Handing out a questionnaire in the beginning of the semester, polling students on
their perceived importance on the following factors: geographic distance, time zone,

4The data available for comparison was limited to the one from Japan.
5An internship lasting a minimum of 20 weeks up to one semester is common part of the curriculum

of engineering education at universities of applied sciences.
6The syllabi are accessible via http://www.ritsumei.ac.jp/acd/ac/kyomu/gaku/onlinesyllabus.htm

and https://www.th-nuernberg.de/fakultaeten/in/studium/masterstudiengang-wirtschaftsinformatik/



ICIC EXPRESS LETTERS, VOL.14, NO.2, 2020 157

language difference, proficiency in shared language, cultural difference, familiarity be-
tween team members, and trust between team members.

2) Handing out a questionnaire at the end of the project to poll students on the same
factors as above. Additional factors were also surveyed, such as university degree,
nationality, language proficiency, and experience in working abroad or with people of
other nationalities. A form for open comments was also included where students could
address points not covered by the questionnaire.

3) The findings over several years were then evaluated and put into context of global
software engineering education. These include individual comments and past research.

3.2. Analysis and interpretation of questionnaire findings. Figures 1 to 6 sum-
marize the data as box plots. Evident by the small sample size, many of the attributes
are too sparse to make any statistical analysis or draw numerical conclusions. These find-
ings, however, allow for some comparative features and supportive markers for previous
research and findings.

The courses were purposefully structured to follow the CDIO stages – Conceive, De-
sign, Implement, Operate. As the syllabus states, this is to “acquaint students with global
– social, managerial, and technical – issues that have become increasingly important in
modern information and communication technology (ICT) industry.” The semester is
typically divided into two parts, the design phase and the prototyping phase. This is in
accordance with the CDIO stages. To focus on the practical parts, individual classes are
for the most part structured into one third short lecture and two thirds team discussion
with regular interaction with, and feedback from, the instructor(s). The topics that are
covered by the lectures are as follows: software lifecycle and its models; quality manage-
ment, process improvement techniques in virtual teams and distributed projects; modern
practices and future trends in software development; socio-technical systems, outsourcing
and global software development; advanced techniques of requirement elicitation; software
project management, modern approaches to management, risks and risk management in
software development projects; advanced techniques of software development, i.e., soft-
ware reuse, reference architecture, open source software; software testing and validation,
modern approaches to software testing and certification; software product documentation,
software documenting tools, unified modeling language (UML).

Reoccurring struggles are language barriers and cultural differences. These are usually
overcome in the first few weeks of teamwork, with the help and encouragement of the
instructors. Conflicts can arise from different viewpoint such as the following:

• the unwillingness to work on weekends (students in Japan were eager to find time to
work, even on weekends, whereas students in Germany were keen to keep business
within business-days);

• differences in technological infrastructure (students in Japan were surprised when
they heard that their team-mates did not have ubiquitous Internet access to have
virtual meetings);

• mismatched expectations (1st year students were expecting too much in program-
ming skills from their 2nd year partners overseas).

Perceived and real language barriers are additional factors. In combination of surveying
students’ own English language abilities and the instructors’ experience, perceived lan-
guage barrier works as follows: English language abilities of an in-group (shared culture
and environment) is perceived as higher and having a clearer accent; abilities of out-group
members are rated lower with less clear accents.

Surveying the students for eleven factors relevant to global software engineering, Figures
1 and 2 show the distribution of the master-level course at the beginning and at the end of
the semester, respectively. Main changes can be noted for geographical distance, cultural
differences, communication between teams, and leadership.



158 D. M. MARUTSCHKE, V. KRYSSANOV AND P. BROCKMANN

Figure 1. Distribution at the beginning of the semester (master-level)

Figure 2. Distribution at the end of the semester (master-level)

Once a common project was decided by the teams, this common goal set aside many
of the cultural differences or they were integrated into a routine. This includes the geo-
graphical distances to some degree.
Interestingly there was a drop in perceived importance (with one outlier rating it most

important) of communication between teams. This could tie into the raise in leadership
importance, which one team in particular was relying heavily on.
Figures 3 and 4 contrast the bachelor-level students surveyed for a project-based learn-

ing course based on global software engineering principals. Most noticeable changes are
in geographical distance, time zone difference, and trust between teams. Communica-
tion between teams merits an additional mention due to the change in distribution. As
the courses at both universities were organized to take place at the same time and with
help of cloud-based team management tools, comments and the questionnaire reflect the
students’ attitude towards differences in location and time zone.



ICIC EXPRESS LETTERS, VOL.14, NO.2, 2020 159

Figure 3. Distribution at the beginning of the semester (bachelor-level)

Figure 4. Distribution at the end of the semester (bachelor-level)

Trust between teams had an increased perceived importance with the exception of one
outlier to rate it least important. Taking comments from students into account, this may
be due to unsatisfactory outcome for some team members.

Communication between teams received a cluster around higher importance, with an-
other exception of a single rating least important (10 out of 11).

Overall many of the answers were more concise after finishing the project. The difference
to the graduate-level course was also noticeable. Mainly the broad distribution of the
bachelor-level students’ answers could point to their lack of experience.

An interesting contrasts posed in Figures 5 and 6, which shows surveys of students
before and after a mandatory internship and often the first long-term work experience in
their study-related industry. The four right-hand factors are only available in the most
recent global software engineering projects and are left open for scale and comparability.

The biggest change can be noticed with perceived cultural differences. Being exposed
to a real working environment, observed differences can be noticed easier and regarded



160 D. M. MARUTSCHKE, V. KRYSSANOV AND P. BROCKMANN

Figure 5. Undergraduate course (2nd year) before internship

Figure 6. Undergraduate course (3rd year) after internship

as potential obstacles. A less pronounced change can be seen in language differences.
This might connect to the former experience, but further investigations are needed to
form any conclusive remarks. Familiarity between teams underwent a loosening in the
accumulation around stronger importance (with previous two outliers).

3.3. Practical applications. Global software engineering education is a complex field
with a multi-facetted problem space. Understanding previous research and implementing
it in one’s own experience suggests improving the ability for students to learn the most. A
methodological questionnaire can help to identify dynamics in global software engineering
and improve education.

4. Conclusions. With more observations of students working in distributed teams, the
volatility of many perceptions but also reoccurring patterns can be detected. There
are consistent changes in attitudes towards cultural differences, time zone differences,
and language differences (all becoming less important and therefore less of a reason for



ICIC EXPRESS LETTERS, VOL.14, NO.2, 2020 161

conflict), and a heightened importance in trust between team members. These values
and perceptions are difficult to teach in theory and the importance of global software
engineering education in an established environment is further supported.

The questionnaire answers within a global software engineering class and around an
exposure to a longer-term internship indicate lower emphasis on the former and higher
emphasis on the latter experience. This could further suggest the importance of guided
project or problem based learning classes in addition to practical skills from a working
environment.

REFERENCES

[1] A. Kress, J. Staufer, P. Brockmann, J. M. Olivares-Ceja and B. Gutierrez, Project-based learning in
an international classroom to teach global software engineering, Proc. of International Conference
on Education and New Learning Technologies, 2017.

[2] J. M. Olivares-Ceja, M. Harrer and P. Brockmann, Teaching cultural aspects of global software
engineering: A virtual Mexican-German team-teaching experience, Proc. of European Conference on
Software Engineering and Education, 2014.

[3] P. Brockmann, G. Ayurzana, M. Ende and R. Lämmermann, A virtual, global classroom to teach
global software engineering: A joint Mongolian-German team-teaching project, Proc. of International
Conference on E-Learning and E-Technologies in Education, 2013.

[4] P. Brockmann, M. Choinzon, S. Beier and M. Bickel, It takes a global village to teach global software
engineering: A joint Mongolian-German team-teaching project, Proc. of International Conference
on E-Learning and E-Technologies in Education, 2012.

[5] R. Sellens, L. Clapham, B. M. Frank and D. S. Strong, Progress with the professional spine: A
four-year engineering design and practice sequence, Proc. of the 8th International CDIO Conference,
Queensland University of Technology, Brisbane, 2012.

[6] E. F. Crawley, D. R. Brodeur, J. Malmqvist and W. A. Lucas, The CDIO syllabus v2.0 an updat-
ed statement of goals for engineering education, Proc. of the 7th International CDIO Conference,
Technical University of Denmark, Copenhagen, pp.47-83, 2011.

[7] D. Jiang and J. Lin, Project-based learning with step-up method – Take CDIO abilities cultivation
in computer specialty for example, Proc. of the 8th International CDIO Conference, Queensland
University of Technology, Brisbane, 2012.

[8] J. Barr, M. Daniels, R. McDermott, M. Oudshoorn, A. Savickaite, J. Noll, T. Clear and S. Beecham,
Challenges and recommendations for the design and conduct of global software engineering courses:
A systematic review, ACM Proc. of the 2015 ITiCSE on Working Group Reports, New York, pp.1-39,
2015.

[9] A. Cajander, T. Clear, A. K. Peters, W. Hussain and M. Daniels, Preparing the global software
engineer, IEEE Proc. of the 10th International Conference on Global Software Engineering, pp.61-
70, 2015.

[10] J. Findlay, A. Weerakoon and N. Dunbar, Integrating multi-disciplinary engineering projects with
English on a study-abroad program, Proc. of the 10th International CDIO Conference, Universitat
Politècnica de Catalunya, Barcelona, Spain, 2014.

[11] S. dos Santos and A. Rodriges, A framework for applying problem-based learning to computing
education, Proc. of IEEE Frontiers in Education Conference, 2016.

[12] A. Plotkin and G. Rechistov, Computer engineering educational projects of mipt-intel laboratory in
the context of CDIO, Proc. of the 10th International CDIO Conference, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2014.

[13] S. Schneider, R. Torkar and T. Gorschek, Solutions in global software engineering: A systematic
literature review, International Journal of Information Management, vol.33, no.1, pp.119-132, 2013.

[14] M. Hummel, State-of-the-art: A systematic literature review on agile information systems develop-
ment, The 47th Hawaii International Conference on System Sciences, pp.4712-4721, 2013.

[15] M. Kim, T. Zimmermann, R. DeLine and A. Begel, Data scientists in software teams: State of the
art and challenges, IEEE Trans. Software Engineering, pp.1-17, 2017.

[16] J. Barr, M. Daniels, M. Oudshoorn, J. Noll, S. Beecham and T. Clear, Preparing tomorrow’s software
engineers for work in a global environment, IEEE Software, vol.34, no.1, pp.9-12, 2017.

[17] Y. Shastri, R. Hoda and M. Babar, Socio-cultural challenges in global software engineering education,
IEEE Trans. Education, no.99, 2016.

[18] R. Maskeliuna, T. Blazauskas and R. Damasevicius, Faster pedagogical framework for steam educa-
tion based on educational robotics, Int. J. Eng. Technol., vol.7, pp.138-142, 2018.



162 D. M. MARUTSCHKE, V. KRYSSANOV AND P. BROCKMANN

[19] C. Laasenius, D. Damien, J. Sheoran, F. Harrison, P. Chhabra, A. Yussuf, V. Isotao, M. Paasivara
and K. Blincoe, Learning global agile software engineering using same-site and cross-site teams, Proc.
of the 37th International Conference on Software Engineering, vol.2, pp.285-294, 2015.

[20] W. Hussain and K. Blincoe, Establishing trust and relationships through video conferencing in virtual
collaborations: An experience report on a global software engineering course, Proc. of Inaugural
Workshop on Global Software Engineering Education, pp.49-54, 2016.


