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Abstract. This brief paper studies the problem of H∞ fuzzy filtering design with immea-
surable premise variables for T-S (Takagi-Sugeno) model. First, a switching method is
proposed to deal with the time derivatives of the membership functions. Then, a switching
filtering is designed and a membership function dependent Lyapunov function is applied
to deriving some LMIs. In the end, two numerical examples are given to show the effec-
tiveness of the proposed approach.
Keywords: H∞ filtering design, Linear matrix inequality, Robust control

1. Introduction. In recent years, as the development of artificial intelligence, there are
lots of results about nonlinear system [1, 2] and fuzzy systems [3-16] especially for T-S
fuzzy model [17-31] (see [32] and the references therein) among which, filtering design is
a hot topic. Up to now, there are lots of results about filtering design; for example, the
problem of H∞ fuzzy filtering with quadratic D stability is derived in terms of LMIs in
[33]. For some cases, the premise variable is measurable as stated in [34] which shows the
premise variables are not dependent on the states estimated by fuzzy observer; however, in
some practical cases, the premise variables depend on the immeasurable states such as [35-
38]. Note, all the above results are based on quadratic Lyapunov function whcih requires
the positive definite Lyapunov matrix to satisfy all local models, but this requirement can
not be always satisfied. Recently, in order to reduce the conservativeness, the membership
function dependent Lyapunov function is proposed in [39] and extended to filtering design
in [40] but the results are only local.

Based on the above discussion, the problem of H∞ filtering design for continuous-time
T-S fuzzy systems with unknown premise variables is further investigated in this paper
and summarized as follows. First, a switching method is applied to dealing with the time
derivatives of membership functions and a membership function dependent Lyapunov
function which has the diagonal form is designed. Then, an algorithm is designed to get
the switching filtering gains such that the fuzzy system is globally asymptotically stable
with better H∞ performance. In the end, two examples are provided to verify the results
given in this paper.

2. Problem Statement and Preliminaries. Considering the following T-S fuzzy mod-
el where the ith rule is described as follows:
Ri:

if ξ1(t) is M1i and . . . and ξp(t) is Mpi
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then:

ẋ(t) = Aix(t) +Biw(t)

z(t) = Lix(t) (1)

y(t) = Cix(t) +Dix(t)

where x(t) ∈ Rn is the state variable, w(t) ∈ Rm is the noise signal that is assumed to be
the signal in L2[0,∞), z(t) ∈ Rq1 is the signal to be estimated, y(t) ∈ Rq2 is measurement
output. The matrices Ai, Bi, Ci, Di and Li for i = 1, . . . , r are of appropriate dimensions.
ξ1(t), . . . ξp(t) are premise variables. ξ(t) = [ξ1(t), . . . , ξp(t)] and ξ(t) is assumed to be a
function of x(t). For brevity, the notation with respect to time t is simplified, for instance,
we will use x instead of x(t).
The T-S fuzzy model (1) is inferred as follows:

ẋ(t) =
r∑

i=1

hi(ξ){Aix(t) +Biw(t)}

z(t) =
r∑

i=1

hi(ξ)Lix(t) (2)

y(t) =
r∑

i=1

hi(ξ){Cix(t) +Diw(t)}

When the premise variable is the state of the system, the fuzzy system (1) becomes

ẋ(t) = Ahx(t) +Bhw(t)

z(t) = Lhx(t) (3)

y(t) = Chx(t) +Dhw(t)

where

Ah =
r∑

i=1

hi(x)Ai, Bh =
r∑

i=1

hi(x)Bi, Ch =
r∑

i=1

hi(x)Ci,

Dh =
r∑

i=1

hi(x)Di, Lh =
r∑

i=1

hi(x)Li.

The design of an H∞ filter for system (3) is discussed in the paper. Because the premise
variable is the estimation of the state, a fuzzy filter is designed as

˙̂x(t) =
r∑

i=1

r∑
j=1

hi (x̂)hj (x̂)
{
Âijx̂(t) + B̂jy(t)

}
ẑ(t) =

r∑
i=1

hi (x̂) Ĉix̂(t)

(4)

where x̂(t) is the estimation of x(t)

Âhh =
r∑

i=1

r∑
j=1

hi (x̂)hj (x̂) Âij, B̂h =
r∑

j=1

hj (x̂) B̂j, Ĉh =
r∑

i=1

hi (x̂) Ĉi.

The matrices Âij, B̂j, and Ĉi with appropriate dimensions are to be determined.

Defining the augmented state vector xcl =
[
xT (t) (x(t)− x̂(t))T

]T
and zcl = z(t) −

ẑ(t), we can obtain the following filtering error system:

ẋcl = Aclxcl(t) +Bclw(t)

zcl = Cclxcl(t)
(5)
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where

Acl =

[
Ah 0

Ah − B̂hCh − Âhh Âhh

]
, Bcl =

[
Bh

Bh − B̂hDh

]
, Ccl =

[
Lh − Ĉh Ĉh

]
.

3. Main Results.

3.1. The time derivative of membership functions. For a membership function
dependent matrix such as Xh =

∑r
i=1 hiXi where Xi are positive and constant matrix,

the time derivative of Xh is Ẋh =
∑r

i=1 ḣiXi. Ẋh has to be dealt with as long as the
used Lyapunov function is dependent on the membership function. In the past, there

are mainly two methods to deal with ḣi, the first is to bound it such as
∣∣∣ḣi∣∣∣ ≤ κ with

κ given. This is a popular method, however, it has shortcomings (more details can be

found in [32]). The other method is to transform the inequality
∣∣∣ḣi∣∣∣ ≤ κ into LMIs with κ

searched. For this method, the scope of the system states must be known, so the results
are only local. In the following, we can use a switching method to ensure Ẋh is negative.
Note, Ẋh can be expressed as

Ẋh =
r∑

i=1

ḣiXi =
r−1∑
k=1

ḣk (Xk −Xr) , (6)

where Zi are to be designed, if the signal (positive or negative) of ḣi is known, Xk −Xr

can be changed to satisfy ḣk (Xk −Xr) ≤ 0 as follows:{
if ḣk ≤ 0, then Xk −Xr ≥ 0,

if ḣk > 0, then Xk −Xr < 0.
(7)

There are 2r−1 possible cases in (7). Let Hl, l = 1, 2, . . . , 2r−1 be the set that contains the

possible permutations of ḣk and Cl be the set that contains the constraints of Xi, Yi and
Zi, (7) can be presented as

if Hl, then Cl. (8)

3.2. Filtering design.

Theorem 3.1. Supposed the switching times are finite, the filter (4) is stable with H∞
disturbance attenuation γp for system (3) if (9), (10) hold with P p

1i > 0, P p
2 > 0

Θkii < 0, i ∈ {1, . . . , r} (9)

2

r − 1
Θkii +Θkij +Θkji < 0, (i, j) ∈ {1, . . . , r}2, i ̸= j (10)

where

Θij =


Φ11 ∗ ∗ ∗
Φ21

(
ϕp
ij

)T
+ ϕp

ij ∗ ∗
BT

k P
p
1j BT

k P
p
2 −DT

k

(
ψp
j

)T −γ2pI 0

Lk − Ĉp
j Ĉp

j 0 −I

 ,
Φ11 = P p

1jAk + AT
kP

p
1j,

Φ21 = P p
2Ak − ψp

jCk − ϕp
ij,

ϕp
ij = P p

2 Â
p
ij, ψp

j = P p
2 B̂

p
j .

The switching filter gain matrices in (4) are given by

Âp
ij = (P p

2 )
−1 ϕp

ij, B̂p
i = (P p

2 )
−1 ψp

i , Ĉp
i , i, j = 1, . . . , r.
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Proof: In order to ensure

V̇ (xcl) + zTclzcl − γ2pw
T (t)w(t) < 0, (11)

applying the Lyapunov function

V (xcl) = xTclP
σ(t)
x̂ xcl, P

σ(t)
x̂ =

[
P

σ(t)
1x̂ 0

0 P
σ(t)
2

]
,

and suppose the pth filter is activated, we have[
AT

clP
p
x̂ + P p

x̂Acl +
dP p

x̂

dt
+ CT

clCcl P p
x̂Bcl

BT
clP

p
x̂ −γ2pI

]
< 0. (12)

Because of Cp and applying the Schur Complement to the above inequality, we get AT
clP

p
x̂ + P p

x̂Acl P p
x̂Bcl CT

cl

BT
clP

p
x̂ −γ2pI 0

Ccl 0 −I

 < 0 (13)

then, substituting Acl, Bcl and Ccl into (13) we have

AT
hP

p
x̂ + P p

x̂Ach ∗ ∗ ∗
P p
2Ah

−P p
2 B̂hCh

−P p
2 Âhh


{

ÂT
hhP

p
2

+P p
2 Âhh

}
∗ ∗

BT
h P

p
1x̂

{
BT

h P
p
2

−DT
h B̂

T
h P

p
2

}
−γ2pI ∗

Lh − Ĉh Ĉh 0 −I


< 0. (14)

(14) is ensured by (9) and (10). �
The following algorithm can be used to get filtering gains.

Algorithm 3.1. For different p ∈ S, solving the LMIs in Cp and (9)-(10) to find the cor-
responding minimal performance γp, the final performance is γ = max {γ1, γ2, . . . , γ2r−1}
and the corresponding feedback gains and observer gains are

{
Âp

ij, B̂
p
i , Ĉ

p
i

}
.

4. Examples.

Example 4.1. Consider the following continuous-time T-S fuzzy system in [35]

ẋ(t) =
2∑

k=1

hi(x1)

{
Aix(t) +

[
0
1

]
w(t)

}
z(t) =

[
1 0

]
x(t)

y(t) =
[
0 1

]
x(t) + w(t)

where

A1 =

[
−0.1 50
−1 −10

]
, A2 =

[
−4.6 50
−1 −10

]
,

h1(x1) = 1− x21
9
, h2(x1) =

x21
9
.

For this system x2 is known and x1 need be estimated by the observer. Let

h1(x1) = w1
0 = 1− x21

9
, h2(x1) = 1− h1(x1),



ICIC EXPRESS LETTERS, VOL.14, NO.3, 2020 261

applying the method in [35] and [40] we get γ = 0.55 and γ = 0.52 respectively, while the
system is still stable even with γ = 0.3 obtained by applying Algorithm 3.1 in this paper.
For C1 (P 1

11 ≥ P 1
12), the corresponding filtering gains are

Â1
11 =

[
−2.1602 39.3801
−0.5486 −8.8816

]
, Â1

12 =

[
−6.0395 91.4773
−0.2711 −25.2491

]
,

Â1
21 =

[
10.2433 1.8522
−3.6835 5.5285

]
, Â1

22 =

[
−4.2851 59.3443
−1.0200 −13.1189

]
,

B̂1
1 =

[
2.5248
0.4603

]
, B̂1

2 =

[
−2.1911
1.4472

]
,

Ĉ1
1 =

[
0.91120 0.0509

]
, Ĉ1

2 =
[
0.8405 0.0132

]
,

and for C1 (P 1
11 < P 1

12), the corresponding filtering gains are

Â2
11 =

[
−1.8296 44.1183
−0.6445 −9.9638

]
, Â2

12 =

[
143.7778 49.2255
−33.7229 −11.2661

]
,

Â2
21 =

[
−139.8379 50.1011
29.8910 −9.8174

]
, Â2

22 =

[
−4.3711 65.9286
−1.0049 −14.6547

]
,

B̂2
1 =

[
1.9029
0.5948

]
, B̂2

2 =

[
−3.4971
1.7423

]
,

Ĉ2
1 =

[
0.8781 −0.0251

]
, Ĉ2

2 =
[
0.7955 0.0404

]
.

The fuzzy system (5) is asymptotically stable with the above switching filtering.

Example 4.2. Consider the following continuous-time T-S fuzzy model in [38]

x(t) =
2∑

i=1

hi(ξ)(Aix(t) +Biw(t))

z(t) =
2∑

i=1

hi(ξ)Lix(t)

y(t) =
2∑

i=1

hi(ξ)(Cix(t) +Diw(t))

where

A1 =

[
−3 0.6
0.2 −2

]
, A2 =

[
−1 0.4
−0.2 −1

]
,

B1 =

[
0
0.3

]
, B2 =

[
0
0.2

]
,

L1 =
[
0.3 0.5

]
, L2 =

[
0.3 0.2

]
,

C1 =
[
1.5 0.5

]
, C2 =

[
1 0.1

]
,

D1 = D2 = 0.1.

For this fuzzy system, applying the method in [35] we get γ = 0.0924, while the system
is still stable even with γ = 0.03 obtained by applying Algorithm 3.1 in this paper. For C1

(P 1
11 ≥ P 1

12), the corresponding filtering gains are

Â1
11 =

[
−0.2851 1.6690
−2.5319 −3.2971

]
, Â1

12 =

[
277.7163 −172.6369
−211.3659 746.0213

]
,

Â1
21 =

[
−276.9262 173.6134
208.0111 −745.7539

]
, Â1

22 =

[
−0.6465 0.7524
−0.4370 −2.4035

]
,
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B̂1
1 =

[
−2.0570
1.8870

]
, B̂1

2 =

[
−0.8290
0.4990

]
,

Ĉ1
1 =

[
0.0971 0.1980

]
, Ĉ1

2 =
[
0.1694 0.1028

]
,

and for C1 (P 1
11 < P 1

12), the corresponding filtering gains are

Â2
11 =

[
−1.0428 1.7256
−3.1752 −5.2158

]
, Â2

12 =

[
821.9 −317.7
−433.9 2481.9

]
,

Â2
21 =

[
−820.7 318.6
429.7 −2479.4

]
, Â2

22 =

[
−1.2608 0.8147
−0.6786 −4.3338

]
,

B̂2
1 =

[
−1.9005
2.3631

]
, B̂2

2 =

[
−0.7411
0.7956

]
,

Ĉ2
1 =

[
0.1500 0.2500

]
, Ĉ2

2 =
[
0.1500 0.1000

]
.

The fuzzy system (5) is asymptotically stable with the above switching filtering.

5. Conclusions. In this paper, we have studied the H∞ fuzzy filtering design with im-
measurable variables for the Takagi-Sugeno fuzzy systems. A switching method is pro-
posed to deal with the time derivatives of the membership functions and the filtering gains
can be obtained by an algorithm presented as LMIs. Two examples have been given to
show the effectiveness of the proposed approach. The method can be used to deal with
other control problems like observer design and positive fuzzy system.
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