
ICIC Express Letters ICIC International c⃝2020 ISSN 1881-803X
Volume 14, Number 4, April 2020 pp. 319–327

ADAPTIVE H∞ SLIDING MODE CONTROL FOR A CLASS
OF UNCERTAIN MARKOVIAN JUMP SYSTEMS WITH TIME-DELAY

Zhen Liu1, Jinpeng Yu1,∗, Lin Zhao1, Yumei Ma2, Binqiang Xue1

and Shuai Cheng1

1School of Automation
2College of Computer Science and Technology

Qingdao University
No. 308, Ningxia Road, Qingdao 266071, P. R. China

∗Corresponding author: yjp1109@hotmail.com

Received October 2019; accepted January 2020

Abstract. In this note, robust sliding mode control problem for a class of uncertain
Markovian jump systems (MJSs) with time-delay and external disturbance is considered.
A new linear sliding surface design is provided for such systems, from which a new sto-
chastic stability condition of the system dynamics during the sliding surface is presented.
And an adaptive reaching motion controller is designed to guarantee the arrival of the
predesigned switching surface. An illustrative example is shown to finish the effectiveness
of the proposed scheme.
Keywords: Sliding mode control, Markovian jump systems, Adaptive controller, Time-
delay

1. Introduction. In the past decades, Markovian jump systems (MJSs) have been great-
ly studied in system control field [1]. It is a fact that control systems such as networked
systems, power systems, may subject to random abrupt variations, MJSs can be employed
for the description of practical systems, thus plenty of important results have been ob-
tained on this subject, which contain stability and stabilization, filtering and H∞ control.
Time-delay often happens in many plants, e.g., lossless transmission lines, which is one
key factor of poor performance and instability [2]. Therefore, it is of great importance to
investigate uncertain MJSs with time-delay, see [3-6].

Sliding mode control (SMC), has been commonly a classical control method in view of
distinguished merits, e.g., simplicity in algorithm, robustness in parametric uncertainties
and external disturbance during the sliding mode [7]. At this point, in the light of strong
background and ability to suppress or offset the modelling uncertainties, SMC approach
has been proposed to tackle the matched nonlinearities for various systems [8-16]. For
MJSs with time-delay, in [11], a SMC design for a class of MJSs was first studied, where the
model transformation method was carried out. By the integral-type sliding surface design,
uncertain stochastic MJSs were considered via SMC method in [12-15]. For instance,
certain restriction is given for the SMC of MJSs in [14] and the case the state variables
may not be available is also not considered, and the model reduction process is needed
for the SMC design in [15]. Thus, the discussed situation motivates us to probe an issue:
how to give a linear sliding surface-based SMC design to deal with the uncertainties in
the same channel with control signals without any model reduction becomes meaningful
and remains open for the MJSs.

Inspired by the aforementioned problems, robust adaptive control problem via a novel
linear sliding surface-based SMC design is considered for a class of MJSs with matched and
structural uncertainties in this manuscript. The main features of the paper in comparison
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to the existing ones is that a new linear sliding surface design of the MJSs is proposed via
adaptive SMC. For stability analysis of the MJSs, a new sufficient condition for stochastic
stability of the sliding mode dynamics of the closed-loop system is presented from the
definition of the sliding surface. Finally, an illustrative example is given to justify the
effectiveness of the proposed method.
The rest of the note is organized as follows. In Section 2, system description and

preliminaries are proposed. In Section 3, main results of the SMC design for the systems
are presented. Section 4 gives an example and Section 5 ends the paper.
Notations: Rn represents the n-dimensional Euclidean space; I and 0 stand for the

identity matrix and zero matrix, respectively. E (·) is the expectation operator. ∥ · ∥
denotes the Euclidean norm of a vector or the spectral norm of a matrix. The superscript
‘T’ denotes the transpose of a matrix or vector, and symmetric elements of a matrix
are denoted by ‘∗’. sym{P} is defined as P + PT, and λmin(P ) denotes the minimum
eigenvalue of a real matrix P .

2. Problem Statement and Preliminaries. For a completed probability space (Ω,F ,
P), where Ω is a sample space, F is the σ-algebra of subset of the sample space and P
is the probability measure on F . The following uncertain MJS is considered

ẋ(t) = [A(rt) + ∆A(rt, t)]x(t) + [Ad(rt) + ∆Ad(rt, t)]x(t− d)

+B(rt)[u(t) + g(t, x)] +G(rt)w(t),

y(t) = C(rt)x(t) +D(rt)w(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state vector, control input and
measured output, respectively. A(rt), Ad(rt), B(rt), C(rt), D(rt) and G(rt) are known
real matrices with appropriate dimensions. {rt, t ≥ 0} is a continuous-time Markovian
process representing the system mode, which takes discrete values in a finite space S =
{1, 2, . . . , N}. Let Π = (πij)N×N (i, j = 1, 2, . . . , N) be transition rate (TR) matrix with
the associated transition probabilities (TP) followed by

Pij = Pr(rt+∆t = j|rt = i) =

{
πij∆t+ o(∆t), if i ̸= j,

1 + πii∆t+ o(∆t), if i = j,

where ∆t > 0 and lim
∆t→0

o(∆t)/∆t = 0, πij satisfies πij > 0 with i ̸= j and πii =

−
∑N

j=1,j ̸=i πij for each mode rt.
For notional simplicity, each possible value of rt is denoted by rt = i ∈ S thereafter,

system (1) can be represented by
ẋ(t) = [Ai +∆Ai(t)]x(t) + [Adi +∆Adi(t)]x(t− d) +Bi[u(t) + g(t, x)]

+Giw(t),

y(t) = Cix(t) +Diw(t),

(2)

with A(rt) = Ai, Ad(rt) = Adi, B(rt) = Bi, C(rt) = Ci, D(rt) = Di and G(rt) =
Gi. [∆A(rt, t) ∆Ad(rt, t)] = [∆Ai(t) ∆Adi(t)] denotes the system parametric uncertainty
satisfying [∆Ai(t) ∆Adi(t)] = MiFi(t)[Ni Ndi], where Mi, Ni and Ndi are real matrices,
and Fi(t) is an unknown nonlinear matrix function assuming FT

i (t)Fi(t) ≤ I, and Bi is
of full column rank. The matched uncertainty g(t, x) may be nonlinear and there exist
unknown parameters α > 0 and β > 0 assuming ∥g(t, x)∥ ≤ β + α∥x(t)∥. The external
disturbance belongs to L2[0 ∞), which may be unknown and bounded by an unknown
positive constant ϑ, i.e., ∥w(t)∥ ≤ ϑ.

Lemma 2.1. [8] Let M , N and F (t) be real matrices of appropriate dimensions with F (t)
satisfying FT(t)F (t) ≤ I. For any scalar ε > 0, it follows that MF (t)N +NTFT(t)MT ≤
εNTN + ε−1MMT.
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3. Sliding Mode Synthesis. In this section, a new linear sliding surface-based control
design is put forward for the systems.

3.1. Design of sliding surface. In this subsection, the following linear switching func-
tion is defined for MJS (2):

s(t) = BT
i Pix(t), (3)

where matrix Pi is a positive definite matrix to be designed.

Remark 3.1. As to the design of sliding surface, it is a linear-type surface, which depends
on the current status of the system state only and easy to apply, differing from the results
in [11-15] for the MJSs and could be benefit for the deduction of the resultant system
during the sliding surface by the new design, see Section 3.2.

3.2. Sliding mode dynamics and admissibility analysis. This part will focus on the
expected dynamics on the sliding motion, and a new sufficient condition for stochastic
stability of the closed-loop system will be derived. In the position, we will use the following
equivalent dynamics to show the stability analysis of the system instead of (2).

ẋ(t) = [Ai +BiKi +∆Ai(t)]x(t) + [Adi +∆Adi(t)]x(t− d) + Bi[u(t) + g̃(t, x)]

+Giw(t),

y(t) = Cix(t) +Diw(t),

(4)

where g̃(t, x) = g(t, x)−BiKix(t).
Then, robust H∞ performance of the considered system can be listed below:
P1) Given a scalar γ > 0, the H∞ performance index can be satisfied as follows: for

nonzero exogenous input v(t) with zero initial conditions:

E

{∫ ∞

0

yT(t)y(t)dt

}
≤ γ2

∫ ∞

0

wT(t)w(t)dt;

P2) Stochastic stablity of the system dynamics during the sliding mode can be satisfied
when w(t) = 0.

Theorem 3.1. The system (2) (or (4)) restricted on the sliding surface in (3) is stochas-
tically stable, if there exist positive definite matrices Pi, Qi and positive scalars εli > 0
(l = 1, 2) for each i ∈ S, to satisfy the underlying condition:

Ξ 11i PiAdi PiGi + CT
i Di PT

i Mi PT
i Mi

∗ Ξ22i 0 0 0

∗ ∗ −γ2I +DT
i Di 0 0

∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ −ε2iI

 < 0, (5)

where Ξ11i = sym{Pi(Ai + BiKi)} + Qi + ε1iN
T
i Ni +

∑N
j=1 πijPj + CT

i Ci, Ξ22i = −Qi +

ε2iN
T
diNdi.

Proof: Step 1. The stability of the closed-loop system during the sliding mode is
studied. The following Lyapunov function is chosen

V (x(t), i) = xT(t)Pix(t) +

∫ t

t−d

xT(θ)Qix(θ)dθ.

Let (x, i) denote appropriate values of the original state and the associated mode i at time
t. Let L be the infinitesimal operator applying to the function V from the point (x, i) at
time t [11], it follows that
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LV (x(t), i) = 2xT(t)Piẋ(t) + xT(t)Qix(t)− xT(t− d)Qix(t− d) + xT(t)
N∑
j=1

πijPjx(t)

= 2xT(t)Pi{[Ai +BiKi +∆Ai(t)]x(t) + [Adi +∆Adi(t)]x(t− d)

+Bi[u(t) + g̃(t, x)]}+ xT(t)Qix(t)− xT(t− d)Qix(t− d)

+xT(t)
N∑
j=1

πijPjx(t)

= 2xT(t)Pi{[Ai +BiKi]x(t) + Adix(t− d) +Bi[u(t) + g̃(t, x)]}

+xT(t)Qix(t)− xT(t− d)Qix(t− d) + xT(t)
N∑
j=1

πijPjx(t)

+ 2xT(t)Pi∆Ai(t)x(t) + 2xT(t)Pi∆Adi(t)x(t− d). (6)

The following inequalities hold from Lemma 2.1 that

2xT(t)Pi∆Ai(t)x(t) ≤ ε−1
1i x

T(t)PiMiM
T
i Pix(t) + ε1ix

T(t)NT
i Nix(t), (7)

2xT(t)Pi∆Adi(t)x(t− d) ≤ ε−1
2i x

T(t)PiMiM
T
i Pix(t) + ε2ix

T(t− d)NT
diNdix(t− d). (8)

Besides, considering the arrival of the sliding surface s(t) = 0, it follows that sT(t) =
xT(t)PiBi = 0. Thus, one can further get from the above discussions that

LV (x, i) ≤ 2xT(t)Pi{[Ai +BiKi]x(t) + Adix(t− d)}+ xT(t)Qix(t)

−xT(t− d)Qix(t− d) + xT(t)
N∑
j=1

πijPjx(t)

+ ε−1
1i x

T(t)PiMiM
T
i Pix(t) + ε1ix

T(t)NT
i Nix(t)

+ ε−1
2i x

T(t)PiMiM
T
i Pix(t) + ε2ix

T(t− d)NT
diNdix(t− d)

= ξT(t)Θiξ(t), (9)

where ξT(t) =
[
xT(t) xT(t− d)

]
, Θi =

[
Θ11i Θ12i

∗ Θ22i

]
, with Θ11i = sym{Pi(Ai+BiKi)}+

Qi + ε1iN
T
i Ni +

(
ε−1
1i + ε−1

2i

)
PT
i MiM

T
i Pi +

∑N
j=1 πijPj, Θ12i = PiAdi, Θ22i = −Qi +

ε2iN
T
diNdi.

Further by the Schur complement, one gives Θi < 0 due to (5), which gives LV (x, i) ≤
−minj∈S {λmin(−Θj)}xT(t)x(t). Via the Dynkin formula with the above description, we
have

E V (x(t), i)− V (x(0), r0) = E

{∫ t

0

LV (x(s), rs)ds|(x0, r0)

}
≤ −minj∈S{λmin(−Θj)}E

{∫ t

0

xT(s)x(s)ds|(x0, r0)

}
, (10)

which results in that for all t ≥ 0, E
{∫ t

0
xT(s)x(s)ds|(x0, r0)

}
≤ V (x(0),r0)

minj∈S{λmin(−Θj)} . There-

fore, one can get the system in (2) (or (4)) is stochastically stable during the sliding
mode.
Step 2. By taking the disturbance w(t) ̸= 0 and the above deduction into consideration,

it follows that

LV (ξ(t), i) + yT(t)y(t)− γ2wT(t)w(t) = ζT(t)Ωiζ(t) (11)
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where ζT(t) =
[
xT(t) xT(t− d) wT(t)

]
, Ωi =

 Ω11i Ω12i PiGi + CT
i Di

∗ Ω22i 0

∗ ∗ −γ2I +DT
i Di

, with Ω11i =

sym{Pi(Ai + BiKi)} + Qi + ε1iN
T
i Ni +

(
ε−1
1i + ε−1

2i

)
PT
i MiM

T
i Pi +

∑N
j=1 πijPj + CT

i Ci,

Ω12i = PiAdi, and Ω22i = −Qi + ε2iN
T
diNdi. Also by the Schur complement, it follows that

condition (5) is equivalent to Ω < 0. Then, taking the integral rule and expectation of
both sides of (11) with time t, it follows that under zero initial conditions that the H∞
index is guaranteed, which ends the proof.

Remark 3.2. For the sliding surface design, the proposed linear switching function in (3)
is mode-dependent depending on the designed matrix Pi, which can be solved by condition
(5) and indicates the connection between the jumps of system modes and the specified
sliding surface, i.e., the effect of Markovian jump may be reflected in the sliding surface.
The design in (3) could benefit to deduct the resultant dynamics during the sliding surface
from the fact that sT(t) = xT(t)PiBi = 0 above.

3.3. Adaptive SMC law synthesis. In the following discussion, the activity mainly
addresses the detailed design of the reaching motion controller, by which the trajectory of
the considered system in (1) can reach the predefined sliding surface s(t) = 0 in finite-time
sense. At this place, the following inequality can be given:

Γ (t) =
∥∥BT

i PiBi

∥∥ ∥g(t, x)∥+ ∥∥BT
i PiGi

∥∥ ∥w(t)∥ ≤ c1∥x(t)∥+ c2, t ≥ 0, (12)

where ci > 0 (i = 1, 2) is the estimation bounds and unknown. To benefit the controller
design, we utilize ĉi(t) to estimate it and the error is described by c̃i(t) = ĉi(t)− ci.

Theorem 3.2. As the adaptive SMC law is established as follows:

u(t) = −
(
BT

i PiBi

)−1 [
BT

i PiAix(t) +BT
i PiAdix(t− d)

]
−

(
BT

i PiBi

)−1 [ ∥∥BT
i PiMi

∥∥ ∥Nix(t)∥+
∥∥BT

i PiMi

∥∥ ∥Ndix(t− d)∥

+ ĉ1(t)∥x(t)∥∥s(t)∥+ ĉ2(t)∥s(t)∥+ δ
]
sgn(s(t)), (13)

where δ > 0, and tracking laws of the estimators ĉi(t) are taken as ˙̂c1(t) = l1∥s(t)∥∥x(t)∥,
˙̂c2(t) = l2∥s(t)∥, where li > 0 (i = 1, 2) denote the adaptive gains and then reachability of
the designed switching surface s(t) = 0 is ensured with probability one.

Proof: Choose the following Lyapunov function

V (t) = 0.5

[
sT(t)s(t) +

2∑
j=1

lj c̃
2
j(t)

]
.

The infinitesimal generator L of the function V (t) along the trajectory of system (2) is
given below

LV (t) = sT(t)ṡ(t) +
2∑

j=1

l−1
j c̃j(t) ˙̃cj(t)

= sT(t)BT
i Pi{[Ai +∆Ai(t)]x(t) + [Adi +∆Adi(t)]x(t− d)

+Bi[u(t) + g(t, x)] +Giw(t)}+
2∑

j=1

l−1
j c̃j(t) ˙̃cj(t). (14)

Moreover, it is easy to check that ˙̂c1(t) = ˙̃c1(t), ˙̂c2(t) = ˙̃c2(t). So it further gives with
controller (13)
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LV (t) ≤ ∥s(t)∥
[∥∥BT

i PiBi

∥∥ ∥g(t, x)∥+ ∥∥BT
i PiGiw(t)

∥∥]
−sT(t) [ĉ1(t)∥x(t)∥∥s(t)∥+ ĉ2(t)∥s(t)∥+ δ] ∥s(t)∥+

2∑
j=1

l−1
j c̃j(t) ˙̃cj(t)

= ∥s(t)∥[c1∥x(t)∥+ c2]− sT(t)[ĉ1(t)∥x(t)∥+ ĉ2(t) + δ]sgn(s(t)) +
2∑

j=1

l−1
j c̃j(t) ˙̃cj(t)

= −δ∥s(t)∥ < 0, if ∥s(t)∥ ̸= 0. (15)

Therefore, the arrival of the designed surface will be guaranteed.

4. Numerical Example. Consider the following Markovian jump system with time-
delay in (1) with two modes, where the system parameters are given by

A1 =

[
−2.5 0.6
−0.5 −2

]
, Ad1 =

[
−0.6 −0.6
−0.5 −0.2

]
, M1 = [0 0]T, N1 = Nd1 = [0 0],

B1 = [0 1]T, C1 = [−1 1], D1 = 0.1,

A2 =

[
−2 0.5
1.5 −1.5

]
, Ad2 =

[
−0.4 0.1
−0.5 −0.2

]
, M2 = [0 0]T, N2 = Nd2 = [0 0],

B2 = [1 0]T, C2 = [−0.5 1], D2 = −0.1, G1 = [0.3 0]T, G2 = [−0.4 0]T.

The parametric matrices Ki, i = 1, 2, are chosen by K1 =
[
2.2514 −1.1232

]
, K2 =[

0.3643 −1.3625
]
. The TR matrix is considered as Π =

[
−2 2
1 −1

]
. Then, taking

γ = 1.2527 and by virtue of the condition in (5), the feasible solutions used in this method
are obtained as

P1 =

[
1.1272 0.1460
0.1460 0.9528

]
, P2 =

[
1.3045 0.0619
0.0619 1.3790

]
,

Q1 =

[
1.9314 −0.1186
−0.1186 1.9827

]
, Q2 =

[
2.0113 −0.1111
−0.1111 1.8981

]
.

Thus, the linear sliding function is designed as

s(t) =

{
[0.1460 0.9528]x(t), i = 1;

[1.2045 0.0619]x(t), i = 2.

The matched uncertainty and disturbance input are chosen by g(t, x) = 0.2 sin(t) ∗ cos(t),
and w(t) = 0.25e−2t ∗ sin(t). Hence, by using the designed adaptive controller in (13)
with the data l1 = 0.2, l2 = 0.6, the simulation results are shown in Figures 1-4, which
definitely demonstrates the efficiency of the proposed scheme. In detail, Figure 1 shows
the system switching mode, and Figure 2 depicts the curve of the system state. The
involution of the controller and switching function is given by Figure 3, and the adaptive
parameters are plotted by Figure 4.

5. Conclusions. In this paper, the problem of adaptive sliding mode control design of
uncertain Markovian jump systems with time-delay and external disturbance has been
studied. A new linear sliding surface design has been designed, by which a new stochastic
stability condition of the system dynamics during the sliding surface has been deducted.
Moreover, an adaptive SMC law has been designed to guarantee the arrival of the switching
surface. At last, an illustrative example has been given to verify the effectiveness of the
proposed scheme. We will consider the systems subject to some stochastic noises via the
proposed method in future work.
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Figure 3. Curves of sliding function and controller
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