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Abstract. Reconstruction of a burst gravitational waveform by denoising observed noisy
data is one of the essential issues of gravitational wave astronomy. Conventional denois-
ing methods require the knowledge of the frequency bands of the noise which is contained
in observed data, but it is difficult to understand the statistical properties of the noise of
observed data because it is known that the noise has non-Gaussian and non-stationary
properties. In this paper, we propose direct and parallel denoising autoencoder for high-
quality denoising without such kind of knowledge, and demonstrate our algorithm to re-
construct one of the typical models of burst gravitational waveforms from the noisy data.
Keywords: Machine learning, Denoising autoencoder, Gravitational wave

1. Introduction. Gravitational waves (GWs) are ripples of spacetime and propagate
space at the same speed as lights like electromagnetic waves propagate space as oscillations
of an electromagnetic field. Whereas electromagnetic waves are emitted by accelerated
electrically-charged particles, GWs are emitted by accelerated massive objects. Since
the interaction between GWs and matters is weak, GWs can pass through almost all
substances. It means that GWs have a potential to provide information of the inside
of highly dense matters which other cosmic rays, such as electromagnetic waves and
neutrinos, cannot come out.

Until now, the laser interferometer gravitational wave detectors, LIGO in the US and
Virgo in Europe, have succeeded to observe 12 GWs. Those GWs were originated by
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mergers of binary black holes and binary neutron stars [1]. Large-scale Cryogenic Gravi-
tational Wave Telescope in Japan, which is named KAGRA [2], is being prepared to join
the international GW observation network with its full configuration in early 2020.
The main targets of those detectors are the following three kinds of GWs: GWs from

mergers of compact star binaries, continuous GWs, and burst GWs. Since the waveforms
can be theoretically simulated for the first two kinds of GWs, we can use the matched fil-
tering technique [3] in the data analysis. However, the precise simulation of the waveforms
of burst GWs has not been completed yet. Therefore, the matched filtering technique can-
not be applied to the analysis of them. A typical source of burst GWs is a supernova
explosion. The observation of a GW from a supernova will give us valuable information
about the dynamics of the explosion.
The data analysis of GWs consists of two steps, detection and parameter estimation. In

the detection step, we search for the candidate of gravitational waves from enormous obser-
vation data containing various noises, such as the laser quantum noise, seismic noise from
the ground. The various detection methods have been proposed depending on whether
the waveforms are predictable or not. They are summarized in [3]. If we find a candidate
of GWs in the detection step, we move on to the second step. In the parameter estima-
tion step, we perform more detail analysis on the time segment containing the detection
candidate. In particular, for the analysis of burst GWs, it is important to reconstruct
signal waveforms by denoising from the noisy observed data. If we can reconstruct the
signal waveform accurately, we can extract valuable information from the waveform and
give it to researchers on both theory and simulation of supernova explosions.
Conventional denoising methods require the knowledge of the frequency bands of the

noise which is contained in observed data to design filters. However, it is difficult to
understand the statistical properties of the noise of observed data from GW detectors
because it is known that the noise has non-Gaussian and non-stationary properties. On
the other hand, in the field of deep learning, Vincent et al. [4] proposed the denoising
autoencoder (DAE). Unlike conventional methods, DAE does not require such kind of
knowledge. DAE has been applied to various fields: the reverberation suppression of
sound source in voice recognition [5], denoising of the electrocardiogram waveform [6], the
image recognition processing on moving object tracking system [7], and so on. DAE has
become an important technology at a scene which requires denoising.
We propose a new model for high-quality denoising named direct and parallel DAE. We

develop the model with the aim to apply it to the reconstruction of a burst gravitational

Figure 1. Sine-Gaussian signal
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waveform from obtained noisy data. In this paper, as the first step, we focus on a sine-
Gaussian waveform as the target waveform shown in Figure 1, which is one of the typically
used simple models of burst GWs. We demonstrate our proposed model’s ability to
perform high-quality denoising and the reconstruction of the target waveform from noisy
data with considerable accuracy by a simulation.

The paper is organized as follows. In Section 2, we explain our proposed algorithm
of the direct and parallel DAE. In Section 3, we overview the simulation to verify the
reliability of our method, and also its results and discussion are presented. Section 4 is
devoted to a summary.

2. Denoising Autoencoder.

2.1. Denoising process. This section describes a denoising process by a neural network
and its learning method. s is an original signal whose length is n1. x is a noise-added
signal, which is the superposition of s and noise. We consider constructing DAE which
estimates s as ŝ after inputting x into it. Now, we make a DAE by a three-layered neural
network shown in Figure 2. The units of the input, hidden, and output layers are denoted
as x1, x2, and x3, whose numbers of dimensions are n1, n2, and n1, respectively. Here,
since x is the input and ŝ is the output of the network, x1,x3 are corresponding to x, ŝ,
respectively. For reducing noise from input data, the dimensions of the input layer and
hidden layer have to fulfill the condition of n1 > n2.

Figure 2. Three-layered neural network

Next, we describe how the noise reduction is achieved by the network. The transfor-
mation from x1 to x2 and from x2 to x3 are expressed by

x2 = ς
(
W 1x1 + b1

)
, (1)

x3 = ς
(
W 2x2 + b2

)
, (2)

where W 1, W 2, b1, and b2 are the model parameters, which are n2×n1 matrices, n1×n2

matrices, n2 vectors, and n1 vectors, respectively, and ς(z) is the sigmoid function. The
elements of the model parameters are corresponding to wi

jk and bij in Figure 2.

2.2. Learning method. To make the network learn, we prepare Ntrain realizations of
noise n(i) (i = 1, . . . , Ntrain) and noise-added data x(i) = s + n(i) as training data, and
define the cost function L for parameter learning. First, we define L(i) as an evaluation
value of ŝ(i), the reconstructed waveform from ith noise-added data, which is expressed
by,

L(i) =
1

n1

n1∑
m=1

(
ŝ(i)m − sm

)2
, (3)
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where ŝ
(i)
m and sm are the m-th values of ŝ(i) and s, respectively. In other words, Equation

(3) is a mean squared error of the estimation of ŝ(i). Then, the cost function L is defined
by

L =
1

Ntrain

Ntrain∑
i=1

L(i). (4)

It means the cost function is defined as the average of the evaluation values. The param-
eters of the network should be determined to minimize L. We update model parameters
to be optimized by using the back-propagation [8].

2.3. Direct and parallel DAEs. We propose direct and parallel DAE to obtain higher-
quality denoising than those by a single DAE. To construct our proposed model, we
make four different DAEs which are named DAE1, DAE2, DAE3, and DAE4. Then, we
construct three models as shown in Figure 3. (A) D-type1 is a model of connecting DAE1
and DAE2 in direct. (B) D-type2 is a model of connecting DAE3 and DAE4 in direct.
(C) DP-type is a model of connecting D-type1 and D-type2 in parallel. In the (C) in
Figure 3, the juncture point means that it outputs the average of input signals.

Figure 3. Models of the proposed method

Connecting DAEs in direct has the same effect as increasing hidden layers of a neural
network, that is, it enables more complicated denoising processing. Connecting DAEs in
parallel has the same effect as introducing the ensemble learning. In other words, the
DAEs compensate for their estimation errors each other. For the reasons, we hypoth-
esized that the DP-type, which combines the both advantages, performs higher-quality
denoising than other types including each single DAE. In the next section, we evaluate
the performance of each type by a simulation.

3. Simulation.

3.1. Simulation outline. First, we prepared training dataset and test dataset. The
training dataset is for parameter learning and the test dataset is for model evaluation.
To prepare the datasets, original signals and some realizations of noise are needed. As
original signals, we use a sine-Gaussian signal s1 whose central frequency f = 300 Hz and
a bias signal s2. The bias signal is used to evaluate the performance to noise-only data.
They are expressed by,

s1,m = 0.468e−(62.5(m−m0)∆t)2sin(2πf(m−m0)∆t) + 0.5, (5)

s2,m = 0.5, (6)
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where m0 = n1/2, and ∆t = 1/4096 s is the sampling interval. The signal waveforms
of s1 and s2 are shown in Figure 4. As noises to be added to the original signals, we
prepare 220 realizations of Gaussian noise whose standard deviation and mean value are
1 and 0, respectively. Each realization of noise is added to s1 or s2 to generate noise-

added datasets x
(i)
1 and x

(j)
2 (i, j = 1, . . . , 110). We assigned each 100 data to the training

dataset and each 10 data to the test dataset.

Figure 4. Signal waveforms of s1, s2

Next, we carry out parameter learning by using the training dataset. In this research,
the dimensions of each DAE are set as n1 = 300, n2 = 200, and the iteration number
of updating is set to be 104. To remove noise components contained in the input data
and extract the essence of the signal, the dimension of the hidden layer should be smaller
than that of the input layer. However, if the dimension of the hidden layer is too small,
the essence of the signal would be also removed. Based on the viewpoints, we set n2 =
n1 × 2/3 = 200 in this paper. We also initialize the model parameters of DAEs (DAE1
– DAE4) by random numbers following Gaussian distribution whose standard deviation
and mean value are 0.5 and 0, respectively. After that, we evaluate each model by using
the test dataset. To evaluate the denoising performances, we defined the degree of noise

reduction E [dB]. First, we calculate P
(i)
0,k and P

(i)
k , k = {1, 2}, which are the power of

the ith noise added to sk and the power of the remaining noise contained in ith denoised
data ŝk. They are defined by

P
(i)
0,k =

n1∑
m=1

(
x
(i)
k,m − sk,m

)2

=

n1∑
m=1

(
n
(i)
k,m

)2

, (7)

P
(i)
k =

n1∑
m=1

(
ŝ
(i)
k,m − sk,m

)2

. (8)

Then, we calculate the average of them as P0,k and Pk, which are expressed by

P0,k =
1

Ntest

Ntest∑
i=1

P
(i)
0,k, (9)

Pk =
1

Ntest

Ntest∑
i=1

P
(i)
k , (10)

where Ntest is the number of test data, which is 10 in this research. Finally, we calculate
the degree of noise reduction for each of s1 and s2 defined by

Ek = 20 log10
Pk

P0,k

. (11)
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As the evaluation, we use the average value of the degree of noise reduction for both
waveforms,

E =
E1 + E2

2
. (12)

If E takes a negative value, it means the power of noise decreased after the denoising pro-
cess. The smaller the value of E is, the higher-quality denoising the model has achieved.

3.2. Results and discussion. In this section, we report the results of the noise reduction
simulation. Figure 5 shows the change of the evaluation function L along with updates
of the learning process of DAE1. We can confirm that L successfully converged, so that
proper model parameters were obtained after the iteration.

Figure 5. Change of L of DAE1 at its learning

As the visualization of the noise reduction results, ŝ
(i)
1 and ŝ

(j)
2 by each model for specific

i, j are shown in Figure 6 with x
(i)
1 , x

(j)
2 . Focusing on the reconstructed waveforms by

DAE1 and DAE2, it seems that not so much noise has been reduced. On the other hand,
we can confirm that noise has been reduced to a certain extent by DAE3 and DAE4.
Compared to these single DAEs, proposed models (D-type and DP-type) perform higher-
quality denoising. In particular, we can see that DP-type succeeded to reconstruct the
original waveforms with considerable accuracy.
However, even though DP-type could denoise with considerable accuracy, the noise

has not been completely removed. To improve denoising performance, it is necessary to
increase training data. Or, to increase the number of DAEs composing DP-type may also
improve the performance, such as 3 × 3 DP-type or 4 × 4 DP-type or so. In addition,
spike-like signals that do not exist in the input data appear in the output of DAEs. It
can be caused by huge values in the model parameters W or b, which are obtained due
to overfitting to the training data, since the output layer uses the sigmoid function as its
activation. One of the main future tasks is to prevent this problem by using the identity
function instead of the sigmoid function at the output layer and/or introducing the L2
regularization in the parameter learning.
The evaluation value E of each of the models, DAE1 – DAE4, D-type1, D-type2, and

DP-type, are listed in Table 1. By comparing DAE1 – DAE4, it can be seen that the
denoising performance differs from each other. E is the largest for DAE1 and the smallest
for DAE4. It means that the choice of initial values of model parameters has a certain
influence on the denoising performance. Another fact to be noted is that E of D-type1 is
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Figure 6. x
(i)
1 , x

(j)
2 and ŝ

(i)
1 , ŝ

(j)
2 by each model for specific i, j
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Table 1. E of each model

Model Structure E [dB]
DAE1 Figure 2 −2.669
DAE2 Figure 2 −2.746
DAE3 Figure 2 −7.340
DAE4 Figure 2 −8.681
D-type1 Figure 3(A) −7.387
D-type2 Figure 3(B) −9.821
DP-type Figure 3(C) −14.31

greater than the sum of E of DAE1 and DAE2. This fact suggests that the direct con-
nection itself has the potential to improve performance. Furthermore, DP-type recorded
the smallest evaluation value of the proposed models. Consequently, we confirmed that
making direct and parallel connections of DAE improves denoising performance.

4. Conclusion. We proposed a new denoising model based on the denoising autoencoder
(DAE) for high-quality denoising with the aim to apply it to the data analysis of burst
gravitational waves. Our proposed model, which is called direct and parallel DAE, is
constructed by connecting DAEs in direct and parallel. For the evaluation of our proposed
model, we conducted a noise reduction simulation with Gaussian noise and sine-Gaussian
signal, which is typically used as a simple model of a burst gravitational wave. In the
simulation, our proposed model performed highest-quality denoising and it succeeded to
reconstruct the original waveforms with considerable accuracy. As the results, we found
the facts that the choice of initial values of model parameters have a certain influence on
the performance and making direct and parallel connections of DAE improves denoising
performance. However, in this research, even the direct and parallel DAE is not able to
remove noise, or reconstruct original signal, completely.
As the future works to improve the performance, we are planning to increase the train-

ing data and the iteration number of parameter updates at the learning process. In
addition, we plan to use the identity function at the output layer and/or introducing the
L2 regularization in the parameter learning. After that, we are going to investigate the
effects of the increase in the number of DAEs composing a direct and parallel DAE. In
this paper, we used only two kinds of signals for the simulation. For the next step, we will
add more kinds of signals, such as sine-Gaussian signals with different central frequencies
or real simulated gravitational waves from supernova explosions, in the training and test
datasets. Furthermore, the actual noise from gravitational wave detectors is known to
have non-Gaussian and non-stationary properties. For this reason, we would like to pro-
ceed with the performance evaluation with actual noise data obtained from gravitational
wave detectors. The current model is presumed not to be effective for non-stationary noise
because all the noises used in the parameter learning follow the same distribution. We
consider that the effectiveness against non-stationary noise can be improved by adding
noises which follow various distributions to the training data.

Acknowledgment. This work was supported in part by JSPS Grant-in-Aid for Young
Scientists (B) (Grant No. 17K13179; Y. Omae), Young Scientists (Grant No. 19K14717;
K. Sakai, and Grant No. 19K20062; Y. Omae), JSPS Grant-in-Aid for Scientific Research
(C) (Grant No. 17K05437; H. Takahashi) and JSPS KAKENHI (Grant No. 17H06358;
H. Takahashi).



ICIC EXPRESS LETTERS, VOL.14, NO.4, 2020 345

REFERENCES

[1] The LIGO Scientific Collaboration and the Virgo Collaboration, GWTC-1: A gravitational-wave
transient catalog of compact binary mergers observed by LIGO and Virgo during the first and
second observing runs, Physical Review X, vol.9, pp.031040-1-031040-49, 2019.

[2] The KAGRA Collaboration, KAGRA: 2.5 generation interferometric gravitational wave detector,
Nature Astronomy, vol.3, pp.35-40, 2019.

[3] H. Shinkai, Direct detection and data analysis of gravitational waves, Systems, Control and Infor-
mation, pp.370-375, 2018 (in Japanese).

[4] P. Vincent, H. Larochelle, Y. Bengio and P. Manzagol, Extracting and composing robust features
with denoising autoencoders, Proc. of the 25th International Conference on Machine Learning,
pp.1096-1103, 2008.

[5] T. Komiyama, N. Ishii, T. Shinozaki, Y. Horiuchi and S. Ishiguro, Examination of large vocabu-
lary voices recognition under reverberant using denoising autoencoder, IPSJ SIG Technical Report,
vol.2013-SLP-97, no.1, pp.1-6, 2013 (in Japanese).

[6] S. Miyatani, H. Koichi and M. Kano, Denoising autoencoder-based modification method for RRI
data with premature ventricular contraction, The 32nd Annual Conference of the Japanese Society
for Artificial Intelligence, 2J3-04, 2018 (in Japanese).

[7] N. Wang and D. Yeung, Learning a deep compact image representation for visual tracking, Advances
in National Information Processing Systems, vol.26, pp.809-817, 2013.

[8] H. Hayashi and Y. Omae, On a direct and parallel denoising autoencoder and its evaluation, Proc.
of the 34th Fuzzy System Symposium, pp.712-717, 2018 (in Japanese).


