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Abstract. This paper investigates the determination of the optimal order quantity for
a vendor due to the disruption risks of the supplier. The optimal order quantity is de-
termined by minimizing the initial supply cost for each supplier, the supply cost for the
complementary order, the stock disposal profit, and the total expected cost reflecting the
inventory depletion cost. In order to determine the optimal order quantity, the problem is
formulated as a mathematical model, and an optimal ordering strategy is derived through
mathematical analysis based on the probability of supplier disruption. In addition, the
adequacy and validity of the mathematical model are demonstrated through numerical
experiments.
Keywords: Supplier disruption, Optimal order quantity, Complementary order, Pro-
curement policy

1. Introduction. On April 14th and 16th in 2016, the automobile parts company Aisin
Seiki and its related companies in Kumamoto in Japan were shut down because of an
earthquake that hit Kumamoto city. In the aftermath of this earthquake, supplying car
doors and engine parts was almost impossible, so Toyota Kyusu, a subsidiary company of
Toyota Motors had to stop operations at three Fukuoka factories, causing them to suffer
enormous economic damage1 . In recent years, factory disruption due to natural disasters
or social-political instability has become increasingly frequent, and this has become a great
threat to supply chain networks among suppliers. Therefore, making optimal decisions
while taking into account many uncertain factors related to supply disruption is a crucial
issue in business management. This study deals with the problem of determining the
optimal order quantity according to the occurrence of supplier vendor disruption.

Procurement policies considering the risk factors of the supply chain can be classified
into three phases: single procurement, binary procurement and multiple procurement.
First, the single procurement policy [1,2] aims to derive an order policy to cope with
supply chain risk by considering joint profit and long-term relationship formation as well
as the supplier’s reliability level through a partnership between the company and single
supplier. Gurler and Palar [3] established a semi-Markov process model considering the
supply chain disruption and adopted a continuous review system that statistically assumes
demand and lead time to determine the order policy. Second, the dual procurement policy
[4,5] aims to derive order policies to deal with supply chain risks by promoting sound
competition between the two suppliers in terms of quality, speed, and competitive prices,
which could not only mitigate supply chain problems but also maintain high quality.
Tomlin [6] considered the capacity constraints of the two suppliers, Chopra et al. [7]
determined the optimal order quantity by dividing the risk of one supplier into the two
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phases (yield uncertainty and supply disruption), and Xanthopoulos et al. [8] applied the
news vendor model to determining the tradeoff between inventory policy and discontinued
risk. Unlike the preceding studies, he established order policies for each supplier under
the assumptions that disruptions can occur and that partial supply may be possible.
Finally, Yang and Qian [9] considered a complementary ordering policy [10,11] that uses
undisrupted supplier’s capacity that holds the undelivered items due to supply chain
disruption, while Ray and Jenamani [12] considered a multi-procurement policy that does
not take into account fixed costs capacity constraints, or suppliers having different supply
and outage probabilities. Kim and Seo [13] considered the number of suppliers, order
volume and optimal complementary order quantity against supply chain disruption in the
same situation of order quantity, supply cost and disruption probability.
In this study, by considering not only the capacity constraints for the two suppliers

evaluated in the binary procurement study but also the complementary ordering policy
conducted in previous studies of multiple procurement, we propose the optimal order
quantity in the case of two suppliers’ disruptions and partial supply. In addition, we have
differentiated from previous studies in aspects that capacity constraints, order quantity,
supply cost, and disruption probability are set differently for each supplier, and that
supplementary order policy and disposal profit are further handled.
The structure of the paper is as follows. In Section 2 mathematical model is formulat-

ed, and based on this model the optimal ordering policy is mathematically analyzed in
the following Section 3. In Section 4, numerical experiments are conducted to examine
the optimal order quantity to minimize the total costs according to the probability of
disruption of the supplier. Finally, Section 5 summarizes the conclusions.

2. Mathematical Model. In this study, we consider a supply chain structure in which
a single vendor trades with two suppliers whose prior knowledge about supply disruption
is unknown. The capacity of each supplier is finite and an initial purchasing cost and
complementary ordering cost are involved in each supplier transaction. The demand
for each supplier’s product is assumed to be deterministic for a certain period of time
at the purchaser. After the period has expired, the demand will be extinguished and
back ordering will not be allowed. In order to prevent excess inventory caused by the
consideration of safety stock, it will be disposed to other buyers, at which time disposal
profit will be generated. The quality of a single product provided by a supplier is the same,
but the supply cost per unit and the probability of each supplier’s disruption are different.
According to the order quantity not received due to disruption, the purchaser can place
a supplemental order within the remaining capacity of the uninterrupted supplier. This
means that we have considered the use of supplemental orders to address unsatisfied
demand. In this case, assuming that the supply cost of each supplier is different, the
supplementary supply cost is also different, and the purchaser must pay a higher cost than
the initial supply cost for the complementary order quantity. In addition, if the amount
of unsatisfied demand is greater than the total remaining capacity of an uninterrupted
supplier, it is treated as a lost sale, resulting in inventory depletion costs.
In this study, we propose an optimal order quantity decision model considering sup-

plier’s probability of disruption, initial supply cost, complementary supply cost, supplier
capacity, inventory depletion cost, and inventory disposal profit in order to minimize the
cost of purchaser. The total expected cost of the purchaser is determined based on the
sum of the transaction costs of the two suppliers at the time of the initial order and the
supply cost of the quantity supplied from the uninterrupted suppliers.
<Notations>
d: decisive demand
p1: disruption probability of supplier F1
p2: disruption probability of supplier F2
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k1: capacity of supplier F1
k2: capacity of supplier F2
q1: order quantity of supplier F1 (q1 < k1)
q2: order quantity of supplier F2 (q2 < k2)
c1: supply cost per unit of supplier F1 for initial order quantity
c2: supply cost per unit of supplier F2 for initial order quantity
e1: supply cost per unit of supplier F1 for complementary order (c1 < e1)
e2: supply cost per unit of supplier F2 for complementary order (c2 < e2)
β: inventory depletion cost per unit (e1, e2 < β)
m: disposal profit per unit (m < c1, c2)
This study deals with cases in which the order quantity exceeds the capacity of the

supplier (k1(k2) < d ≤ q1 + q2), and the minimum expected cost can be expressed as
follows.

E[TC(q1, q2)] = dβp1p2 + (c2q2 + e2(k1 − k2) + β(d− k2)) p1(1− p2)

+ (c1q1 + e1(k1 − q2) + β(d− k1)) p2(1− p1)

+ (c1q1 + c2q −m(q1 + q2 − d)) (1− p1)(1− p2) (1)

The first term in Equation (1) represents the costs when both suppliers F1 and F2 are
interrupted by the probability of disruptions p1 and p2. Since the demand is not satisfied,
the inventory depletion cost β for d occurs. The second term represents the case where
supplier F1 is stopped. Since the initial order has not been satisfied, complementary
order quantity k2 − q2 and unsatisfied demand d − k2 occur. The third term is the case
where supplier F2 is stopped. As is the case for the second term, since the initial order
is not satisfied, the complementary order quantity k1 − q1 and the unsatisfied demand
d − k1 occur. The last term indicates the case when both suppliers F1 and F2 are not
interrupted and they do not have to place any supplementary orders because they fulfill
all of the initial demand. However, since the order quantity exceeds the demand quantity,
the disposal profit q1 + q2 − d will be generated.

Equation (1) can be transformed as follows.

E[TC(q1, q2)] = d (β (p1(1− p2) + p2(1− p1)) +m(1− p1)(1− p2))

+ (c1 − e1p2 −m(1− p2)) (1− p1)q1

+(c2 − e2p1 −m(1− p1)) (1− p2)q2 − (β − e2)p1(1− p2)k2

− (β − e1)p2(1− p1)k1 (2)

The above Equation (2) shows that the total expected cost is provided as a linear function
of the order quantities q1 and q2. This means that the optimal order quantity that
minimizes the total cost is determined by the coefficients of q1 and q2. In other words, the
optimal order volume is determined regardless of vendor capacity (k1, k2), total demand
(d), and inventory depletion cost (β). The purpose of this study is to derive the optimal
order quantities q∗1 and q∗2 that minimize the total expected cost of Equation (2). By
< x, y >, we can denote the optimal order quantity with respect to suppliers F1 and F2,
respectively, i.e., q∗1 = x and q∗2 = y.

3. Results Analysis. In this section, the optimal ordering strategy is mathematically
analyzed based on our mathematical model presented in the previous section. For the
convenience of expressions, we define the following.

p∗1 = (c2 −m)/(e2 −m), p∗2 = (c1 −m)/(e1 −m), p̂ =
(e2 − c1)p1 + (c1 − c2)

(e2 − e1)p1 + (e1 − c2)
(3)

The following results show that the optimal order quantity depends on the supplier’s
interruption probability.
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Theorem 3.1.
(1) When p1 ≤ p∗1 and p2 ≤ p∗2, if p2 > p̂ then < k1, d− k1 >, otherwise < d− k2, k2 >
(2) If p1 ≤ p∗1 and p2 > p∗2, then < d− k2, k2 >
(3) If p1 > p∗1 and p2 ≤ p∗2, then < k1, d− k1 >
(4) If p1 > p∗1 and p2 > p∗2, then < k1, k2 >

Proof: (1) Let p1 ≤ p∗1 and p2 ≤ p∗2. Then from Equation (3) we have p1 ≤ (c2 −
m)/(e2 −m) and p2 ≤ (c1 −m)/(e1 −m) which leads to c2 − e2p1 −m(1 − p1) ≥ 0 and
c1−e1p2−m(1−p2) ≥ 0. Therefore, the following holds: (c2−e2p1−m(1−p1))(1−p2) ≥ 0
and (c1 − e1p2 −m(1− p2))(1− p1) ≥ 0. This means that the coefficients of order q1 and
q2 are both positive in Equation (2) and that the optimal order quantity can be obtained
when the total cost is minimized by maximizing the smaller of the two coefficients. In this
case, if p2 > p̂, we have (c1 − e1p2 −m(1− p2))(1− p1) < (c2 − e2p1 −m(1− p1))(1− p2),

implying that p2 > p̂ = (e2−c1)p1+(c1−c2)
(e2−e1)p1+(e1−c2)

. That is, the coefficient of q1 is smaller than the

coefficient of q2. Therefore, the optimal order quantity is the maximum value taken by q1
and q2, that is, k1 and d− k1 (the remaining quantity after excluding the order quantity
of q1); for p̂ ≤ p2, the opposite is true.
(2-4) It can be proven simply by the same process as (1). �
The above result indicates the following. Theorem 3.1(1) is determined by another

threshold value p̂ when the likelihood of interruption of the two suppliers is sufficiently
low to be less than the arbitrary threshold values, p∗1 and p∗2. That is, if p2 > p̂ (p2 ≤ p̂), it
is optimal to order the maximum capacity (k1(d−k2)) for the supplier whose order quantity
coefficient of the total cost function is smaller than the other’s, and to order the other
supplier for the unsatisfied demand (d−k1(k2)). In Theorem 3.1(2), it is optimal to order
F2 supplier’s maximum capacity (k2) when the likelihood of interruption of one supplier
F2 is sufficiently high to exceed an arbitrary threshold p∗2; that is, when the coefficient
of q1 is positive and the coefficient of q2 is negative. Theorem 3.1(3) corresponds to the
opposite case to (2). Theorem 3.1(4) shows that it is optimal to order each supplier for
maximum when the likelihood of the supplier’s interruption is sufficiently larger than the
arbitrary threshold values, p∗1 and p∗2, to prepare for the supplier’s interruption. That is,
when the coefficients of q1 and q2 are negative, the maximum capacities k1 and k2 are the
optimum order quantities, respectively.

4. Numerical Experiments. In this section, numerical experiments are conducted to
examine the optimal order quantity to minimize the cost of the vendor according to
the probability of disruption of the supplier. The parameters are set as follows for the
numerical experiment: the fixed transaction cost of each supplier is 5 million won; the
supply cost per unit of supplier (F1), c1, is 36,000 won/unit for the initial order quantity;
the supply cost c2 per unit of supplier (F2) of the initial order quantity is 38,000 won/unit;
the supply cost e1 is 54,000 won/unit for the supplier and the supplier (F1) for the
supplementary order; the supply cost per unit of the supplier (F2) e2 for the supplementary
order is 56,000 won/unit; the inventory depletion cost β is 120,000 won/unit; and the
disposal cost m is 30,000 won/unit. The capacities k1, k2 of each supplier are 6000, and
the demand d is assumed to be 10,000 in a single period, and p1 is 0.12. Based on the
above conditions, the following can be obtained: p∗1 = 0.307, p∗2 = 0.25, and p̂ = 0.025.
Table 1 shows the coefficients of q1 and q2 according to p2, as well as the optimal order

quantity and total cost for each supplier. This result is valid for the case of p1(= 0.12) <
p∗1(= 0.307) and p2(= 0.12) < p∗2(= 0.25) in Theorem 3.1. As shown in Table 1, since the
coefficient of q2 at p2 ≤ p̂(= 0.025) is smaller than the coefficient of q1, it is optimal to
order the maximum quantity that can be ordered by supplier F2 and order the rest of the
quantity of demand to the other supplier F1. Therefore, the optimal order quantity for
each supplier is q∗1 = 4,000(d− k2) and q∗2 = 6,000(k2). If p2 > p̂(= 0.025), the coefficient
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Table 1. Coefficients of q1 and q2 according to p2 order quantity and total cost

Disruption
percentage

(p2)

Coefficient
of order

quantity q1

Coefficient
of order

quantity q2

Optimal order
quantity (q∗1)

Optimal order
quantity (q∗2)

Total cost
(million won)

0.01 5,068.8 4,831.2 4,000(d− k2) 6,000(k2) 456
0.02 4,857.6 4,782.4 4,000(d− k2) 6,000(k2) 430
0.03 4,646.4 4,733.6 6,000(k1) 4,000(d− k1) 433
0.04 4,435.2 4,684.8 6,000(k1) 4,000(d− k1) 437
0.05 4,224.0 4,636 6,000(k1) 4,000(d− k1) 440
0.06 4,012.8 4,587.2 6,000(k1) 4,000(d− k1) 444

of q1 will be smaller than the factor of q2, so this time it is optimal to order the largest
amount available for supplier F1 and order the remaining demand to another supplier F2.
Hence, the optimal order quantity is given by q∗1 = 6,000(k1) and q∗2 = 4,000(d− k1). For
the other cases in Theorem 3.1, we can confirm the similar results by the same experiment
described above, so we skip the explanation here.

5. Conclusions. Our study proposed a complementary order policy for supply chain
network with consideration of the suppliers’ disruption and a mathematical model that de-
termines the optimal order quantity for purchasing companies that procure parts through
outsourcing. From Theorem 3.1, our main results showed the threshold values of the prob-
ability of interruption p∗1, p

∗
2 and we compared the threshold values with each vendor’s

probability of interruption. We presented five different ordering policies according to p∗1,
p∗2. In particular, we suggested that the optimal supply amount is determined according
to the threshold value p̂ if the disruption probability of the two suppliers is sufficiently
low. This means that it is desirable to measure the probability of disruption and prepare
for the threshold point due to the fact that the optimal order quantity changes according
to the interruption probability of each supplier.

This study only considers a single period for deterministic demand for model simplifi-
cation and is limited to a dual procurement policy. Thus, future research should consider
expansion to a multi procurement model. In addition, we analyze the deterministic de-
mand, but we expect that it will develop into a more realistic model considering the
change of demand with time.
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