
ICIC Express Letters ICIC International c⃝2020 ISSN 1881-803X
Volume 14, Number 4, April 2020 pp. 399–407

A NOVEL NON-SMOOTH NON-NEGATIVE MATRIX
FACTORIZATION ALGORITHM BASED ON ACCELERATED

MIRROR PROJECTED METHODS

Xiangguang Dai, Yingyin Tao, Jiang Xiong and Yuming Feng∗

School of Three Gorges Artificial Intelligence
Chongqing Three Gorges University

Wanzhou District, Chongqing 404100, P. R. China
∗Corresponding author: yumingfeng25928@163.com

Received October 2019; accepted January 2020

Abstract. This paper presents a novel non-smooth non-negative matrix factorization
(nsNMF) algorithm for dimensionality reduction. Because the objective function of n-
sNMF is non-convex, we transform it into two symmetric convex problems and solve
them iteratively. The optimal solution of each subproblem is obtained by solving a con-
strued estimate sequence with accelerated mirror projected methods. We demonstrate that
each subproblem has a fast convergence rate at O(1/k2). Examples on the image data
demonstrate that our proposed algorithm produces the smaller factorization errors and
the parser representations.
Keywords: Non-smooth non-negative matrix factorization, Non-convex, Accelerated
mirror projected methods, Dimensionality reduction, Sparse representation

1. Introduction. With the advent of big data, it is urgent to find some effective tech-
niques for dimensionality reduction. Therefore, matrix factorization methods have at-
tracted more interest as basic tools for data processing. The famous methods are prin-
cipal component analysis [1], singular value decomposition [2] and vector quantization
[3]. Their goals are finding several low-dimensional matrices whose product approximates
the data matrix. Besides above mentioned methods, non-negative matrix factorization
(NMF) can decompose a non-negative data matrix into two low-dimensional non-negative
matrices. Suppose that a data matrix V ∈ Rm×n and r << min(m,n), NMF finds two
non-negative matrices A ∈ Rm×r and S ∈ Rr×n to approximate V . Generally, Euclidean
distance is used to measure the approximation error between V and A× S as follows:

F (A, S) =
1

2
∥ V − AS ∥2F , s.t. A ≥ 0, S ≥ 0, (1)

where ∥ · ∥F denotes the Frobenius norm. The learned subspace S is very useful for
clustering and classification [4, 5, 6]. It is obvious that an effective subspace should
include the following aspects. Firstly, the potential structure or hidden features of the
high-dimensional data should be captured. Secondly, the subspace should be sparse.
Therefore, constraints or penalty terms imposed on A or S or both are proposed to solve
mentioned problems [7, 8, 9]. Recently, non-smooth non-negative matrix factorization
[10] performs satisfactorily in learning useful features. The achievement of nsNMF is to
add a positive symmetric smooth matrix W into NMF instead of constraints on A or S.
The nsNMF model can be described as

V = AWS, (2)
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where W = (1 − θ)I + θ
n
11T , I ∈ Rr×r is an identity matrix, 1 ∈ Rr is a vector of all

ones, and 0 ≤ θ < 1. As θ becomes larger, A and S are sparser. Mathematically, nsNMF
can be measured by Euclidean distance as follows:

F (A, S) =
1

2
∥ V − AWS ∥2F , s.t. A ≥ 0, S ≥ 0. (3)

In fact, NMF algorithms can be improved to optimize nsNMF [11, 12, 13, 14, 15, 16, 18,
19]. The familiar algorithm is the multiplicative update rule (MULT) [11], which has a
simple structure and comes to good results. However, it converges slowly when the data
dimension becomes higher. Lin [12] proposed the block coordinate descent (BCD) [17]
method to transform NMF into two convex problems and alternately optimized them until
convergence. For each problem, the Armijo line search was proposed to determine the
step length, and the projected gradient method was utilized to optimize each problem.
Unfortunately, the Armijo line search spends much time. Based on the BCD method,
Guan et al. [13] proposed the Lipchitz constant as the step length and each problem
can be solved by Nesterov’s gradient method. Although the proposed algorithm has
a fast convergence rate at O

(
1
k2

)
in optimizing each problem, it is inefficient in high-

dimensional data reduction. Recently, [18] and [19] proposed neural networks to search the
global solution of non-negative matrix factorization. However, algorithms based on neural
networks are convergent slowly than traditional algorithms. Previous algorithms utilized
the BCD scheme by optimizing alternately A and S. Actually, another optimization
scheme called hierarchical alternating least squares (HALS) was proposed to update each
column of A and each row of S sequentially [14]. Gillis and Glineur [15] proposed the
BCD scheme in updating the rows of S and the columns of W many times. Recently,
utilizing random shuffling updates of the rows of S and the columns of A achieves better
performances [16].
In this paper, we propose a novel algorithm (nsAMD) to optimize nsNMF. Firstly, we

also transform nsNMF into two subproblems by BCD. For any S1 ≥ 0, nsAMD alternately
solves

At+1 = argmin
At≥0

F
(
At, St

)
=

1

2

∥∥∥V T −WStTAtT
∥∥∥2
F

(4)

and

St+1 = argmin
St≥0

F
(
At+1, St

)
=

1

2

∥∥V − At+1WSt
∥∥2
F

(5)

until convergence, where t denotes the iterative number. Secondly, to optimize (5), an
estimate sequence ϕk+1(S) is proposed and constructed to satisfy minS∈χ{ϕk+1(S)} ≥
F (At+1, S). Similarly, (4) can be optimized by the same way. Thirdly, we utilize the
accelerated mirror descent methods to optimize the estimate sequences.
The remainder of this paper is organized as follows. In Section II, basic mathematical

knowledge, definitions and lemmas of Nesterov’s optimization methods are introduced.
Three optimization sequences are proposed to optimize each problem and we present
lemmas and theorems to prove each problem with a fast convergence rate at O (1/k2).
Based on the analysis of Section II, we propose a novel algorithm named nsAMD to
optimize non-smooth non-negative matrix factorization. In Section III, we compare our
proposed algorithm with other nsNMF algorithms in terms of the convergence rate and
the sparse representation. Finally, Section IV presents the conclusion and future work.

2. Theoretical Analysis. In this section, some definitions and basic mathematical
knowledge are applied to solve (3). It is obvious that (4) and (5) have a similar for-
m. Hence, we only consider to solve (5), and (4) can be solved accordingly. Problem (5)
is re-written into the following equivalent form:
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min
S∈χ

F (S) =
1

2

∥∥V − AtWS
∥∥2
F
. (6)

• Gradient descent method. Given a step length L, the update rule S ← S− 1
L
∇F (S)

is the most familiar method in optimization. However, this update rule is considered
as a special form of

S ← argmin
Y ∈χ

{
1

2
L ∥Y − S∥2F + < ∇F (S), Y − S >

}
. (7)

• Dual averaging method. According to history solutions S0, S1, . . . , Sk−1 ∈ χ, the
next solution is

Sk ← argmin
Y ∈χ

{
P (Y ) +

k−1∑
i=1

αi(F (Si)+ < ∇F (Si), Y − Si >)

}
, (8)

where P (Y ) = 1
2
∥ Y ∥2F and αi > 0 is the weight of the ith point.

• Mirror descent method. Given previous point S ∈ χ, the next point can be optimized
by

S ← argmin
Y ∈χ

{D(S) + α < ∇F (S), Y − S >}, (9)

where D(S) is defined as a prox-function. Generally, it is a continuous differentiable
and strong convex with the convexity parameter σ > 0. We assume D(S0) = 0.
Thus, for any S ∈ χ, we have

D(S) ≥ 1

2
σ ∥ S − S0 ∥2F . (10)

Definition 2.1. Suppose that Tχ(S) ∈ χ is the optimal solution of (7), we obtain

F (Tχ(S)) ≤ F (S) + argmin
Y ∈χ

{
1

2
L ∥ Y − S ∥2F + < ∇F (S), Y − S >

}
. (11)

Definition 2.2. Suppose that {ϕk(S)}∞k=0 is an estimate sequence. Thus, for a sequence
{λk}∞k=0 we have

ϕk(S) ≤ (1− λk)F (S) + λkϕ0(S). (12)

Lemma 2.1. The objective function of F (S) is convex.

Proof: Suppose that 0 ≤ λ ≤ 1, for any S1, S2 ∈ χ we have

F (λS1 + (1− λ)S2)− (λF (S1) + (1− λ)F (S2))

=
1

2
tr
((

V − AtW (λS1 + (1− λ)S2)
)T × (V − AtW (λS1 + (1− λ)S2)

))
− λ

2

(
V − AtWS1

)T (
X − AtWS1

)
− 1− λ

2
tr
((

V − AtWS2

)T (
V − AtWS2

))
= − λ(1− λ)

2
tr
((

AtW (S1 − S2)
)T (

AtW (S1 − S2)
))

= − λ(1− λ)

2
∥ AtW (S1 − S2) ∥2F≤ 0.

�
Lemma 2.2. The gradient of F (S) is Lipshitz continuous and the Lipshitz constant is∥∥∥(AtW )

T
AtW

∥∥∥
F
.

Proof: According to Lemma 2.1, F (S) is differentiable and convex. Given any S1, S2 ∈
χ, we obtain
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∥ ∇F (S1)−∇F (S2) ∥F
=
∥∥∥(AtW

)T
AtWS1 −

(
AtW

)T
AtWS2

∥∥∥
F

=
r∑

i=1

n∑
j=1

∣∣∣∣∣
r∑

k=1

((
AtW

)T
AtW

)
ik
(S1 − S2)kj

∣∣∣∣∣
≤

r∑
i=1

n∑
j=1

(
r∑

k=1

∣∣∣((AtW )
T
AtW

)
ik

∣∣∣ |(S1 − S2)kj|

)

=
r∑

i=1

r∑
k=1

∣∣∣((AtW
)T

AtW
)
ik

∣∣∣ n∑
j=1

r∑
k=1

|(S1 − S2)kj|

=
∥∥∥(AtW

)T
AtW

∥∥∥
F
∥ S1 − S2 ∥F .

�

Lemma 2.3. If F (S) is differentiable and Lipshitz continuous with the Lipshitz constant

L =
∥∥∥(AtW )

T
AtW

∥∥∥
F
. For any S1, S2 ∈ χ, we have

0 ≤ F (S1)− F (S2)− < ∇F (S2), S1 − S2 >≤
1

2
L ∥ S1 − S2 ∥2F .

Proof: According to Taylor’s expansion, F (S1) can be expanded by

F (S1) = F (S2)+ < ∇F (S2), S1 − S2 > +
1

2
< S1 − S2,∇2F (S2)(S1 − S2) > .

Thus,

F (S1)− F (S2)− < ∇F (S2), S1 − S2 >

=
1

2
< S1 − S2,∇2

SF (S2)(S1 − S2) >=
1

2

∥∥AtW (S1 − S2)
∥∥2
F
.

By Lemma 2.2, we can obtain 0 ≤ ∥AtW (S1 − S2)∥2F ≤
1
2

∥∥∥(AtW )
T
AtW

∥∥∥
F
∥S1 − S2∥2F .�

Lemma 2.4. Given a sequence {Sk}∞k=0, if the following inequality

F (Sk) ≤ ϕ∗
k = min

S∈χ
ϕk(S) (13)

holds, then F (Sk)− F (S∗) ≤ λk(ϕ0(S
∗)− F (S∗)).

Proof:

F (Sk) ≤ ϕ∗
k = min

S∈χ
ϕk(S) ≤ min

S∈χ
{(1− λk)F (S) + λkϕ0(S)} ≤ (1− λk)F (S∗) + λkϕ0(S

∗).

According to (13), the convergence rate of (5) can be easily computed. Next, we present
lemmas and theorems to construct ϕk and λk. �

Lemma 2.5. We assume αk ∈ (0, 1), αk = τk+1

Ck+1
and Ck =

∑k
i=0 τi. The following

sequence

ϕk+1(S) = (1− αk)ϕk(S) + αk[F (Sk+1)+ < ∇F (Sk+1), S − Sk+1 >]

=
C0

Ck+1

ϕ0(S) +
1

Ck+1

k∑
i=1

τi(F (Si)+ < ∇F (Si), S − Si >) (14)

is an estimate sequence.
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Proof: Let λk =
1
Ck
. According to assumptions, we can easily obtain λk+1 = λk(1−αk).

By Lemma 2.4, we have

ϕk+1(S) ≤ (1− αk)ϕk(S) + αkF (S)

= (1− (1− αk)λk)F (S) + (1− αk)(ϕk(S)− (1− λk)F (S))

≤ (1− (1− αk)λk)F (S) + (1− αk)(ϕ0(S))

= (1− λk+1)F (S) + λk+1ϕ0(S).

�
Lemma 2.6. Suppose that

α0 ∈ (0, 1], λk+1 = λk(1− αk), λk+1 =
1

Ck+1

,
Ck

Ck+1

≥ α2
k, Ck =

k∑
i=0

τi,

αk =
τk+1

Ck+1

(15)

ϕ0(S) =
1

C0

{
L

σ
D(S) + τ0[F (S0)+ < ∇F (S0), S − S0 >]

}
(16)

Zk = min
S∈χ

ϕk(S) (17)

Sk+1 = αkZk + (1− αk)Yk (18)

Yk+1 = Tχ(Sk). (19)

Then, minS∈χ{ϕk+1(S)} ≥ F (Yk+1) holds.

Proof: By (16), ϕk+1(S) is equivalent to the following form:

ϕk+1(S) =
1

Ck+1

(
L

σ
D(S) +

k+1∑
i=0

τi(F (Si)+ < ∇F (Si), S − Si >)

)
. (20)

Let τ0 ∈ (0, 1] and Y0 = Tχ(S0). For k = 0, one obtains

min
S∈χ
{ϕ0(S)} = min

S∈χ

1

C0

{
L

σ
D(S) + τ0[F (S0)+ < ∇F (S0), S − S0 >]

}
≥ min

S∈χ

{
L

2τ0
∥ S − S0 ∥2F +[F (S0)+ < ∇F (S0), S − S0 >]

}
≥ F (Y0).

We suppose ∇ϕk(Zk) = 0 and L =
∥∥∥(AtW )

T
AtW

∥∥∥
F
, and ϕk(S) can be transformed by

Taylor’s expansion as

ϕk(S) = ϕk(Zk)+ < ∇ϕk(Zk), S − Zk > +
1

2
< S − Zk,∇2ϕk(Zk)(S − Zk) >

≥ ϕk(Zk) +
1

2Ck

L ∥ S − Zk ∥2F . (21)

Suppose that minH∈χ{ϕk(S)} ≥ F (Yk) holds. According to (15), (18) and (21), we can
get

min
S∈χ

ϕk+1(S)

= min
S∈χ

{
Ck

Ck+1

ϕk(S) +
τk+1

Ck+1

[F (Sk+1)+ < ∇F (Sk+1), S − Sk+1 >]

}
≥ min

S∈χ

{
Ck

Ck+1

[
ϕk(Zk) +

1

2Ck

L ∥ S − Zk ∥2F
]
+

τk+1

Ck+1

[F (Sk+1)
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+ < ∇F (Sk+1), S − Sk+1 >]

}
≥ min

S∈χ

{
Ck

Ck+1

Yk +
τk+1

Ck+1

[F (Sk+1)+ < ∇F (Sk+1), S − Sk+1 >] +
1

2Ck+1

L ∥ S − Zk ∥2F
}

= min
S∈χ

{
F (Sk+1) + αk < ∇F (Sk+1), S − Zk > +

1

2Ck+1

L ∥ S − Zk ∥2F
}

≥ F (Sk+1) + min
S∈χ

{
αk < ∇F (Sk+1), S − Zk > +

1

2
α2
kL ∥ S − Zk ∥2F

}
. (22)

Let Y = αkS + (1− αk)Yk. By (18), we can easily obtain Y − Sk+1 = αk(S − Zk). Thus,
(22) can be simplified as

min
S∈χ

ϕk+1(S) ≥ F (Sk+1) + min
S∈χ

{
< ∇F (Sk+1, Y − Sk+1) > +

1

2
L ∥ Y − Sk+1 ∥2F

}
≥ F (Sk+1) + F (Yk+1)− F (Sk+1) ≥ F (Yk+1)

�
Note that τk, αk and Ck are unknown, but they can be constructed by (15). Let

αk = 2
k+3

, τk = k+1
2

and Ck = (k+1)(k+2)
4

. With above analysis, an optimal scheme is
presented to optimize S. For k ≥ 0 and S0 ≥ 0, we have

Yk = argmin
Y≥0

{
F (Sk)+ < ∇F (Sk), Y − Sk > +

1

2
L ∥ Y − Sk ∥2F

}
(23)

Zk = argmin
Z≥0

1

Ck+1

(
L

σ
D(Z,Z0) +

k+1∑
i=0

τi(F (Si)+ < ∇F (Si), Z − Si >)

)
(24)

Sk+1 = αkZk + (1− αk)Yk. (25)

In the following, we will demonstrate that this scheme has a fast convergence rate at

O(1/k2).

Theorem 2.1. Suppose that {Yk}∞k=0 and {Sk}∞k=0 are generated by (23), (24) and (25),
one obtains

F (Sk)− F (S∗) ≤ 2LD(S∗)

(k + 1)(k + 2)
,

where S∗ is an optimal solution for (5).

Proof: By Lemma 2.4 and λk =
1
Ck
, we can get

F (Sk)−
(
1− 1

Ck

)
F (S∗) ≤ 1

Ck

ϕ0(S
∗)

=
1

Ck

1

C0

{
L

σ
D(S∗) + τ0[F (S0)+ < ∇F (S0), S

∗ − S0 >]

}
≤ 1

Ck

1

C0

L

σ
D(S∗) +

1

Ck

1

C0

τ0F (S∗). (26)

According to definitions of Ck and τk, (26) is simplified to F (Sk)− F (S∗) ≤ 2LD(S∗)
(k+1)(k+2)

.�
Based on above analysis, we solve problem (3) by Algorithm 1, where ϵS, ϵA and ϵ are

small tolerances.
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Algorithm 1 nsAMD

Require: V , At, St, ϵ
Ensure: A, S

Initialization: A1 ≥ 0, S1 ≥ 0, ϵA, ϵS, t← 1, W
repeat

1. At+1 ← AMD
(
V T , StT , AtT ,W T , ϵA

)
2. St+1 ← AMD(V,At+1, St,W, ϵS)

3. t← t+ 1

until
∣∣∣F (At+1,St+1)−F (At,St)

F (At,St)

∣∣∣ ≤ ϵ

A← At+1, S ← St+1

function Amd(V , At, St, W , ϵS)

Initialization: Z−1 ← S0 ← St, k ← 0, L←
∥∥∥(AtW )

T
(AtW )

∥∥∥
F
, k ← 0

repeat
1. ∇F (Sk)← (AtW )

T
(AtW )Sk − (AtW )

T
V

2. Yk ← P

(
Sk −

1

L
∇F (Sk)

)
3. Zk ← P

(
Zk−1 −

τk
L
∇F (Sk)

)
4. Sk+1 ← αkZk + (1− αk)Yk

5. k ← k + 1

until
∣∣∣F (Sk+1)−F (Sk)

F (Sk)

∣∣∣ ≤ ϵS

return St+1 ← Sk+1

end function

3. Simulations. Four algorithms are compared in this section and we refer to them
as nsAMD, nsMULT [11], nsPG [12] and nsNeNMF [13]. We compare them by the
ORL dataset. Two indices are proposed to estimate their performances including the
factorization error e and the sparsity degree d. e is defined by

e =
1

2
∥ V − AWS ∥2F . (27)

For any V ∈ Rm×n, the sparsity degree of V can be described by

dV =

√
mn−

∑m
i=1

∑n
j=1 Vij

/√∑m
i=1

∑n
j=1 V

2
ij

√
mn− 1

. (28)

The ORL dataset can be downloaded from http://www.cl.cam.ac.uk/research/dtg/attar
chive. To have fair comparisons, we do 10 experiments and report average results. Let
m = 10304, n = 400, r = 100, ϵA = ϵS = 10−4, θ = 0.9 and a maximal number of the
sub-iteration be 30.

Firstly, We present the factorization errors and the sparsity degrees obtained by all
algorithms. Table 1 shows the average results in a short duration. Clearly, nsAMD
achieves the best performances than other algorithms. However, this cannot reveal that
our proposed algorithm is superior to other algorithms in learning bases.

Secondly, we mainly test whether each algorithm can learn bases in a short period.
Figure 1(a)-1(d) show the learned bases by different algorithms. According to Table 1 and
Figure 1, we observe that: 1) the larger factorization error leads to the worse performance
in learning bases; 2) the smaller factorization error obtained by nsAMD means that the
learned bases by nsAMD are sparser.
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Table 1. Average results of e(∗109), SAS, SA and SS on ORL

nsAMD nsMULT nsPG nsNeNMF
e 0.1519 0.2777 0.2034 0.2225

dAS 0.6704 0.1884 0.4854 0.4517
dA 0.6666 0.1791 0.4795 0.4456
dS 0.6717 0.1514 0.4957 0.3725

(a) nsAMD (b) nsMULT (c) nsNeNMF (d) nsPG

Figure 1. Basis images on ORL under the time limit of 10 seconds

4. Conclusion and Future Work. This paper proposed a new efficient non-smooth
non-negative matrix factorization algorithm called nsAMD. To optimize nsNMF, an iter-
ative algorithm based on Nesterov’s accelerated mirror descent methods is proposed and
we demonstrate its convergence rate at O(1/k2). Experiments demonstrate that nsAMD
is more effective to obtain the smaller factorization errors and the sparser bases.
Several topics should be discussed in the future work:

• The HALS optimization scheme and Nesterov’s accelerated mirror descent methods
should be considered to optimize nsNMF;
• A variable step length should be considered instead of the Lipshitz constant.

Acknowledgement. This work is supported by Foundation of Chongqing Municipal
Key Laboratory of Institutions of Higher Education ([2017]3), Foundation of Chongqing
Development and Reform Commission (2017[1007]), and Foundation of Chongqing Three
Gorges University.

REFERENCES

[1] I. Jolliffe, Principal Componente Analysis, Springer-Verlag, 1986.
[2] A. Gersho and R. M. Gray, Vector quantization and signal compression, Springer International,

vol.159, no.1, pp.407-485, 1992.
[3] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd Edition, Wiley-Interscience,

605 Third Avenue, New York, NY, United States, 2000.
[4] V. P. Pauca, F. Shahnaz, M. W. Berry and R. J. Plemmons, Text mining using non-negative matrix

factorizations, Siam International Conference on Data Mining, Lake Buena Vista, Florida, USA,
2004.

[5] W. Xu, X. Liu and Y. H. Gong, Document clustering based on non-negative matrix factorization,
SIGIR 2003: Proc. of the International ACM SIGIR Conference on Research and Development in
Information Retrieval, Toronto, Canada, pp.267-273, 2003.

[6] D. Cai, X. F. He, J. W. Han and T. S. Huang, Graph regularized nonnegative matrix factorization for
data representation, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, no.8, pp.1548-
1560, 2011.

[7] P. O. Hoyer, Non-negative sparse coding, Proc. of the 2002 IEEE Workshop on Neural Networks for
Signal, pp.557-565, 2002.

[8] P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, Journal of Machine
Learning Research, pp.1457-1469, 2004.

[9] W. X. Liu, N. N. Zheng and X. F. Lu, Non-negative matrix factorization for visual coding, Proc.
of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03),
vol.3, pp.III-293, IEEE, 2003.



ICIC EXPRESS LETTERS, VOL.14, NO.4, 2020 407

[10] A. Pascualmontano, J. M. Carazo, K. Kochi, D. Lehmann and R. D. Pascualmarqui, Nonsmooth
nonnegative matrix factorization (nsNMF), IEEE Trans. Pattern Analysis and Machine Intelligence,
vol.28, no.3, pp.403-415, 2006.

[11] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,
Nature, vol.401, no.6755, pp.788-791, 1999.

[12] C. J. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Computation,
vol.19, no.10, pp.2756-2779, 2007.

[13] N. Guan, D. Tao, Z. Luo and B. Yuan, NeNMF: An optimal gradient method for nonnegative matrix
factorization, IEEE Trans. Signal Processing, vol.60, no.6, pp.2882-2898, 2012.

[14] A. Cichocki and A. Phan, Fast local algorithms for large scale nonnegative matrix and tensor fac-
torizations, IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences,
vol.92, no.3, pp.708-721, 2009.

[15] N. Gillis and F. Glineur, Accelerated multiplicative updates and hierarchical ALS algorithms for
nonnegative matrix factorization, Neural Computation, vol.24, no.4, pp.1085-1105, 2012.

[16] S. W. N. Erichson, A. Mendible and J. Kutz, Randomized nonnegative matrix factorization, Pattern
Recognition Letters, vol.104, pp.1-7, 2018.

[17] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,
Journal of Optimization Theory and Applications, vol.109, no.3, pp.475-494, 2001.

[18] H. Che and J. Wang, A nonnegative matrix factorization algorithm based on a discrete-time projec-
tion neural network, Neural Networks, vol.103, pp.63-71, 2018.

[19] J. Fan and J. Wang, A collective neurodynamic optimization approach to nonnegative matrix fac-
torization, IEEE Trans. Neural Networks and Learning Systems, vol.28, no.10, pp.2344-2356, 2017.


