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Abstract. With the massive explosion of mosquito data, dealing with large amounts of
text data has become problematic. Although more and more complex methods can under-
stand and process semantics more accurately, they become less applicable to large-scale
text data. Text hashing is one of the effective approaches, since it may reduce processing
speed to a completely different scale extreme. Previous study has focused on single doc-
ument classification, or the document pair binary classification problem. In this paper,
we propose a supervised multi conditional semantic text hashing method. Experimental
results on public datasets show that our method can generate multi conditional hash code.
Keywords: Natural language processing, Semantic hashing, Machine learning, Similar-
ity search

1. Introduction. In recent years, natural language processing has investigated a variety
of studies. Because natural language data is produced in large quantities on the Internet
and contains a lot of valuable information, understanding natural language has always
been the goal of researchers. Many researchers have tried to capture the potential semantic
relations hidden in natural language. However, due to the complexity of the model,
many approaches can no longer be used in textual big data with large volumes, so some
researchers have begun to reduce the complexity of the approaches, or compress the text
data.

Text hashing is one of the efficient text compression methods. It improves both com-
putational efficiency and search quality levels [1]. Recently, many text hashing methods
have been developed. Most use class label information, and the classification accuracy is
quite good [3]. The evaluation metric of these approaches is the percentage of documents
from among 100 retrieved documents that have a label identical to the query document.
This metric can suitably simulate the finding of identical same class data. Although there
is no problem with this approach, sometimes we prefer that the hash result retains the
relationship between the two texts, so that there is a hashing method that utilizes the
relationship [4]. Utilizing pairwise semantic relation information is better matching for
practical application. Unfortunately, this approach can only use binary labeled informa-
tion, but the relationship between text pairs in the real world cannot be only binary.

In this paper, we want to learn the text hashing function that can utilize the multi-class
relation information of text pairs. The contributions of this paper are as follows. First, we
present two text hashing models that learn multi-class label information. Second, we test
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the performance of the two models with experiments. The rest of this paper is organized
as follows. Section 2 reviews previous related approaches. Section 3 presents our hashing
model. Section 4 provides the experimental results. Finally, Section 5 concludes the
paper.

2. Related Work. Due to the computational and storage efficiency levels of compact
binary codes, hashing has been widely used for approximate nearest neighbor searches.
Traditional data independent data hashing methods, such as locality-sensitive hashing
(LSH) and spectral hashing have been widely used [5,6]. When supervised information,
such as class labels or relative similarity, is available, a supervised data dependent hashing
method is a better choice. With the revival of neural networks, deeper learning models are
widely used for hashing [11]. These methods were first applied to high-dimensional data
or image data. However, if directly used for text data, they usually fail to capture the
semantic similarity with regard to the original text. Hence, many text hashing methods
have been proposed.
At the very beginning, text semantic hashing used an autoencoder to learn hash func-

tions [1]. These methods built multiple Boltzmann machines (RBMs) to learn the binary
unit that is capable of modelling the input text word count data. After training, the
binary hash code of any document is acquired by simply thresholding the output of the
deepest layer. Furthermore, several studies have explored the power of convolutions neu-
ral networks for text hashing with the help of word embedding. For example, in [12], they
cleverly changed the model in image processing to carry out text modeling.
In recent years, the probabilistic generative model has achieved great success in several

domains. The variational auto-encoder (VAE) [7] is an appealing framework for generative
modeling, as it is a hybrid of variational inference [8] and the deep neural network. VAEs
acquire the advantages of both deep learning and probabilistic generative models. VAEs
achieve state-of-the-art performance in many problems, especially with image data [9]. For
text hashing, unsupervised and supervised variational deep semantic hashing (VDSH) [3]
have been developed to preserve each content from a document during the text hashing
process. These approaches use a VAE framework that is similar to the one presented here.
However, VDSH differs from our hashing scheme, in that it utilizes only categorical class

label data to improve the accuracy of semantic text hashing. Pairwise label data have
not been used in previous hashing methods. Variational pairwise supervised text hashing
(VPSH) [4] utilizes pairwise label information. VPSH utilizes the pairwise information
in the most direct and efficient way, and proves that in several text pair problems, text
hashing can also get good returns.

3. Proposed Method. Let x denote the input text, and z denote the hash code of
the given input text. z has a real value or binary code of n. We also refer to n as
the number of bits. The encoding process is to infer z from document x, while the
decoding process is to reconstruct x from the latent variable z. Intuitively, the latent
variable learns from the corpus that captures the key semantic features from x. The hash
function is the distribution of the encoding p(z|x). All previous studies attempted to
learn this distribution from the corpus. Let x be the bag-of-words representation of a
document. x has a length of V , where V is the vocabulary of words that have appeared
in the corpus. In this model, the approximation encoding distribution is qϕ(z|x), and
the decoding distribution is qθ(x|z), where ϕ and θ are the parameters of the encoder
and decoder, respectively. Based on the VAE framework [7], we maximize the variational
lower bound, instead of the marginal distribution. Finally, the objective function of text
hashing is as follows:

Lvae = Eqϕ(z|x)[log qθ(x|z)]−DKL(qϕ(z|x)||p(z)) (1)
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Let x1 and x2 be an input texts pair, and z1 and z2 denote the hash code of the given
input text pair. In order to use annotated data y to supervised learning, previous works
add the label distribution of hash code p(y|z). Previous works using categorical label
information simply allow documents in the same category to have a similar hash code [3].
There are some studies that further allow models to learn pairwise distribution p(y|z1, z2)
[4]. On this basis, we have developed two different models to solve the problem of multiple
conditional text hashing.

3.1. Conditional model. To utilize multi class information, we first extend to the con-
ditional variational autoencoder (CVAE) [1]. While VAE essentially models the latent
variables and data directly, CVAE models the latent variables, data, and both condi-
tioned to some random variables. When CVAE is simply applied to text hashing, the
objective function of the single text CVAE is as follows:

Lcvae = Eqϕ(z|x)[log qθ(x|z, y)]−DKL(qϕ(z|x, y)||p(z, y)) (2)

Then extend Equation (2) into the form of a text pair:

Lcvae = Eqϕ(z1,z2|x1,x2)[log qθ(x
′
1, x

′
2|z1, z2, y)]−DKL(qϕ(z1|x1, y)||p(z1, y))

−DKL(qϕ(z2|x2, y)||p(z2, y)) (3)

In order to facilitate the expansion, the first term in Equation (2) is actually obtained
by adding two regeneration losses of x1 and x2.

According to this formula, we can get the whole architecture, as shown in Figure 1.
Assume the y condition has only three labels y1, y2, and y3. z11 , z21 , and z31 are the
hidden variables generated by x1 and three labels. The parameters ϕ and θ are shared
for processing x1 and x2. So throughout the process, there is only one set of encoder
parameters ϕ and decoder parameters θ. After training, all the text will generate three
kinds of hash code according to the three conditions. If we want to get the label of a
text pair, we must calculate the similarity of each condition, if the label with the highest
similarity from s1, s2 and s3 is the predicted label. In Figure 1, s1 is computed by z11 and
z12 , s2 is computed by z21 and z22 , and so on.

Figure 1. Architecture of conditional hashing



420 R. XUAN, J. SHIM AND S.-G. LEE

3.2. Multi-model. In the multiple VAE model, each model will train the corresponding
class label. If there are three types of labels, there are three models. The first model,
which has ϕ1, only learns when the class is y1. To utilize the pairwise label information in
a direct way, the goal here is to address the distribution p(y|z1, z2), where y is the label
information of text x1 and x2. We assume that the label information is binary (y is 0
or 1). In order to make the model balance the variational lower bound and discriminate
objective, the total objective is given as follows:

Lcvae = Eqϕ(z1,z2|x1,x2)[log qθ(x
′
1, x

′
2|z1, z2, y)]−DKL(qϕ(z1|x1, y)||p(z1, y))

−DKL(qϕ(z2|x2, y)||p(z2, y)) +Wt(y − sim(z1, z2)) (4)

where, Wt is the label weight that controls the supervised influence. A high weight will
cause the entire encoder to generate a more similar hash code for x1 and x2, in order to
make the similarity higher.
According to this formula, we can get the whole architecture, as shown in Figure 2.

Assume the y condition has only three labels y1, y2 and y3, and that there are three kinds
of encoders and decoders. The three parameters ϕ1, ϕ2, ϕ3 are independent, and do not
affect each other. ϕ1 is only learned when the label information of x1 and x2 is y1. Since
the encoder with ϕ1 is only trained when the label is equal to y1, this encoder only learns
the hash code with the label y1.

Figure 2. Architecture of multi-conditional hashing

After training, all the text will generate three kinds of hash code according to the three
labels. If we want to get the label of the text pair, we must calculate the similarity of
each label, if the label with the highest similarity is the predicted label. This is calculated
in the same way as in the previous model.

4. Experiments.

4.1. Dataset and set-ups. In this paper, we use the Stanford Natural Language In-
ference (SNLI) Corpus dataset. It is a popular bench-mark dataset that contains 570k
human-written English sentence pairs. Each text pair with human annotations indicates
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whether each pair captures a contradiction/neutral/entailment relationship. We measure
the three 3-way classification accuracy performance of our algorithm on this dataset.

The Adam optimizer is widely used in VAEs. We use the Adam optimizer [13] with
a learning rate of 0.001, and use the learning rate exponential decay with a factor of
0.96 for every 10,000 steps. We also use the dropout technique with a value of 0.9 to
alleviate over-fitting. VAE-based text hashing and several other models exploiting the
same datasets use dropout at 0.9 in common. Therefore, we also use the same value.
We set the starting label weight parameter in Equation (4) to 0.4. All experiments are
conducted on a server with an Intel i7-6850K CPU, a NVIDIA GeForce GTX TITAN X
GPU, and 16 GB of main memory.

4.2. Accuracy. We use the variational pairwise supervised text hashing (VPSH) as a
baseline for comparisons. Because previous supervised methods do not utilize pairwise
label information, we do not compare the performance with those methods. We use the
easiest way to let VPSH train, and calculate the accuracy.

Table 1 shows the results of our model and the baseline. Our two models outperform
VPSH with various numbers of bits. Although our two models both use the label in-
formation of the training set, the multi VAE model works significantly better than the
others.

Table 1. Accuracy of 3-way classification of SNLI dataset in different bits

model 64-bit 128-bit 256-bit
VPSH 44.2 45.2 45.3
CVAE 45.6 47.3 45.2
MVAE 57.7 59.7 59.4

4.3. Number of same similarity. In order to clarify why the two proposed models
show such different accuracy, we also made a special corresponding analysis. In our
prediction phase, our two models will generate three similarities in SNLI, respectively.
Then according to the similarity, we determine the prediction class. In fact, these three
similarities are likely to be exactly the same; we must randomly choose the prediction
class. This phenomenon is especially obvious when the number of bits is small.

We count the proportion of the same similarity of the two models at 64-bit. Table 2
shows that only 45 percent of the similarity of the CVAE model is different, so many of
the predictive classes are random, resulting in such low accuracy. In fact, we can see in
Equation (3) that since all the encoders in the CVAE model are shared, when the label
is changed only when the input is changed, the latent variable is likely to be similar, and
the hash code is binarized according to this latent variable. In this case, the z11 and z21
are likely to be the same, and the same hash code calculates the same similarity.

Table 2. Probability of the same similarity in the three classes

model
Each one is
different (%)

Two of the three
are the same (%)

All are the
same (%)

CVAE 45 26 27
MVAE 98 1.3 0.04

5. Conclusions. In this paper, we present a novel multi-conditional semantic text hash-
ing method that exploits multi-label pairwise label information. More specifically, the
method can learn text pairwise label information in a more direct manner. We also
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experimented with comparing the two models and the baseline, and analyze the exper-
imental results. If we want to map different relationships to the same text space, it is
obviously not a sensible choice to use conditional generation with one shared encoder,
because this method is likely to mix all the classes together, and finally generate hash
code, in which there will be some problems.
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