
ICIC Express Letters ICIC International c⃝2020 ISSN 1881-803X
Volume 14, Number 5, May 2020 pp. 497–504

SPECIFYING A PROGRAM CONTROL PATH USING FLOW
DIAGRAM TRANSLATED INTO DESCRIPTION LOGIC

OF ONTOLOGY ENGINEERING

Shimaa Ibrahim1, Yasser Fouad Hassan2,3 and Mohamed Hamed Kholief4

1Department of Mathematics
Faculty of Science

University of Damnhour
El-Gomhoreya Street, Damanhour 22516, Egypt

Shiamaa.ibrahim@yahoo.com

2Faculty of Computing and Artificial Intelligence
Pharos University

7 Sidi Gaber, Alexandria 21311, Egypt
y.fouad@pua.edu.eg

3Department of Mathematics and Computer Science
Faculty of Science

University of Alexandria
Baghdad Street, Alexandria 21568, Egypt

4Computers and Information Technology
Arab Academy for Science, Technology and Maritime Transport

9 Abou Qear Street, Alexandria 21937, Egypt

Received October 2019; accepted January 2020

Abstract. Software testing plays a vital role in improving the performance of software
by detecting and fixing bugs and faults which cause software failure. However, software
testing is an expensive task, labor-intensive and time-consuming process in the software
development life cycle. Every software product needs to be tested in order to make sure it
achieves all of its goals and to detect any unexpected behaviour. One of the most critical
features in structural testing is path testing which helps to find every possible executable
path that helps to determine all faults lying within a piece of code. Any software pro-
gram includes multiple entries and exit points. Testing each of these points is challenging
as well as time-consuming. To reduce this complexity and time consuming, the use of
ontologies might prove useful. Ontology is a technique used at one or more software
lifecycle phases. Ontology allows for the definition of a common vocabulary and frame-
work among users (either human or machines). Software development has benefited from
this conceptual modelling, allowing a common understanding of the concepts involved in
the software process. This paper is proposed to improve test path generation of control
flow graph. The basic idea is to use OWL-DL ontology as the knowledge representation
formalism, to model and specify control flow by adding semantics to control flow graph
entities and adding semantics to the dynamic behaviour of control flow relations.
Keywords: Software testing, Control flow graph (CFG), Basis path, Cyclomatic com-
plexity (CC), Ontology, OWL-DL

1. Introduction. Software testing is the process of evaluating the developed software
to ensure that it correctly implements a specific function and is traceable to customer
requirements. Software testing is now treated as the most important part in software
development life cycle. Black-box and white-box testing are the two major techniques
for unit testing. In black-box testing, no information about the internal structure of the

DOI: 10.24507/icicel.14.05.497

497



498 S. IBRAHIM, Y. F. HASSAN AND M. H. KHOLIEF

program under testing is available. However, in white-box testing, a complete source code
or the internal structure is available.
Basis path (or path) testing, a white-box testing technique, is one of the most important

ways of testing the software code. Basis path testing uses a control flow graph to depict
the logical control flow of the program under test. The main focus in this testing is to
write test cases in such a way that it covers all possible feasible paths including all nodes
and edges.
Control flow graphs (CFG) model is a program visualization technique commonly used

when analyzing the possible flow of control between the basic blocks of a program during
its execution. As such, many software analysis tools offer a feature for the automatic
generation of control flow graphs for given program code. For large program functions,
however, the resulting control flow graphs do become rather huge that sometimes it be-
comes difficult to examine a certain execution path [1]. Control flow information is used
to recognize a set of paths from which test cases are generated. Test case creation is one
of the most difficult steps in testing. Therefore, the creation of test cases is one of the
important tasks in software testing [2]. In this context, knowledge management (KM)
emerges as an important means to manage software testing knowledge and to improve
the software testing process. The use of ontologies for testing has not been discussed as
much as the use of ontologies in other stages of the software development process [3].
The approach in this paper is to apply semantic technologies and ontology engineer-

ing. The main purpose is to create a method for deriving test path from an ontology
representing the specification and domain for control flow graph.
This paper is structured as follows: Section 2: a discussion of related works; Section

3: preliminaries of control flow graph and ontology; Section 4: the proposed approach;
Section 5: a case study in this formalism; and finally Section 6: the conclusion of the
paper.

2. Related Works. The use of ontologies for testing has not been discussed as much
as the use of ontologies in other stages of the software development process. Researchers
focus on generating the executable test cases based on the ontologies and reusing the
already built test cases. Nasser et al. [4] presented a framework to automatically generate
the executable test cases based on the ontologies on different domains with custom defined
coverage rules. The framework uses various ontologies such as behavioural model ontology,
domain ontology, and implementation ontology to generate the custom defined coverage
criteria in order to generate the executable test suite.
Dalal et al. [5] also described an ontology-based approach for test case reuse which

enhances flexibility and reusability during test case generation and handles users’ queries
better. Roy et al. [6] proposed a formalization of business processes which merges OWL-
DL with semantic web rule language (SWRL). The main goal of his approach is linking
control flow relations of a process and its sub-processes using rules as well as providing
a consistent way of modelling and designing ontologies. The framework is successfully
integrated with different applications involving requirement engineering.

3. Preliminaries.

3.1. Control flow graph. A control flow graph (CFG) is a directed graph that visualizes
all possible execution paths in a program. Each node corresponds to one of the basic
blocks, which the program is composed of. The edges of the control flow graph represent
the flow of control between these basic blocks. There are two types of basic blocks that
pose exceptions, namely the entry blocks and the exit blocks and most of the programs are
constructed with the three types of constructs, namely sequence, selection and iteration
(see Figure 1) [7].



ICIC EXPRESS LETTERS, VOL.14, NO.5, 2020 499

Figure 1. Basic types of control structures

Control flow graph (CFG) diagrams are used to generate optimal or efficient path for
software under test (SUT). In other words, a control flow graph describes how the control
flows throughout the program. CFG based testing provides all statement coverage, branch
nodes coverage, event coverage and provides all path coverage. This is the most effective
technique for software testing.

3.2. Cyclomatic complexity. Cyclomatic complexity is used to generate a number of
linearly independent paths in the graph. Cyclomatic complexity is also denoted as V(G)
while V means the Cyclomatic number in graph theory. The formula V(G) = P + 1,
where P stands for number of predicate nodes in control flow graph.

3.3. Ontology. An Ontology is a specification of the conceptualization and correspond-
ing vocabulary used to describe a domain. It represents a domain knowledge in an under-
standable way for both human and computer. It is formed by a set of concepts which are
organized hierarchically and defined by properties [8]. OWL (Ontology Web Language),
recommended by the W3C, is designed for use by applications that need to process the
content of information instead of just presenting information to humans. OWL1 offers
three sublanguages with increasing expression intended for specific communities of de-
velopers and users: OWL Lite, OWL DL, and OWL Full [8]. OWL DL supports those
users who want the maximum expressiveness while retaining computational completeness
(all conclusions are guaranteed to be computable) and decidability (all computations will
finish in finite time). OWL DL is so named due to its correspondence with description
logics.

Description logic (DL) is the most recent family of formal languages of knowledge rep-
resentation based on first-order logic. It consists of basic descriptions of the application
domain, i.e., atomic concepts for the classes or group of individuals with similar charac-
teristics; atomic roles for properties of these concepts or binary relations between indi-
viduals, and from them, other complex descriptions can be constructed as axioms using a
set of logical operators called concepts constructors [9]. A knowledge base that refers to
an application domain, formalized through description logic, comprises two fundamental
components as shown in Figure 2.

TBox, a terminological component, represents the intentional knowledge or the knowl-
edge about the characteristics of the concepts.



500 S. IBRAHIM, Y. F. HASSAN AND M. H. KHOLIEF

Figure 2. DL architecture

ABox, an assertional component, represents the extensional knowledge or the specif-
ic knowledge about the individuals (instances) and their relationships within the same
abstraction level.

3.4. Behavioural model ontology. Behavioural models describe the internal behaviour
of a system. Behavioural model ontology is an ontology-based representation of the soft-
ware artifact based on which tests are generated. It describes concepts corresponding
to the software artifacts structural elements, the relationships between them, and their
instances. For code-based artifacts, behavioural model ontology can describe the concepts
in a programming language (such as methods, and function call) and be automatically
populated from the existing code. Also, for GUI testing, it can describe the GUI elements
and be automatically populated from the existing GUIs [11]. On the other side, applica-
tion logic ontology can be used to define logic (reason) behind the application behaviour.
It defines the reasons for a particular behaviour performed by the software system. While
system behaviour ontology treats the system as ‘Black Box’, application, logic ontology
treats it as ‘White Box’, i.e., the latter deals with the reason behind a particular behaviour
and knows how and why the system is behaving in such a way. Finally, behavioural model
ontology can define and model diagrams, such as data flow diagram, flow chart diagram,
activity diagram, sequence diagram, class diagram state chart diagram, object diagram,
component, and deployment diagram [10].

4. Proposed Approach. This paper proposes to improve test path generation of control
flow graph. The basic idea is to use OWL-DL ontology, to model and specify control flow
by adding semantics to specify the meaning of control flow graph entities and adding
semantics to specify the dynamic behaviour of control flow relation. OWL-DL seems to
perfect choice for semantically annotating flow diagram and dynamic behaviour of control
flow relation.
The approach decomposes control flow structure diagram into atomic patterns (see

Figure 3) and generates an independent OWL concept for each of these patterns and then
merges concepts to get the complex concept for the whole diagram. Complex concept is
generated from the start node to an end node in a diagram. In the following, we will
focus on defining concepts and properties we have chosen.

Axiom.

Start node. Start node is defined for the corresponding first node in the diagram. The
expression B0 denotes the complex concept for the whole block. The concept expression for
the pattern in (Figure 3(a)) is modeled as a conjunction of Start class and the existential
restriction of concept class for block A with followed by role.

B0 ≡ (Start ⊓ = 1 followed by.BA) (1)



ICIC EXPRESS LETTERS, VOL.14, NO.5, 2020 501

Figure 3. Basic pattern of CFG

Sequential pattern. In Figure 3(b) block B1 is followed by B2.

B1 ≡ (Block ⊓ = 1 followed by.B2) (2)

Selection pattern. This section is divided in two parts.

If statement. Figure 3(c) block C is followed by block B1 or block D depending on certain
condition. The condition associated with the choice is captured as string values for the
data type property pairWith.

C ≡ (Block ⊓ = 1 followed by.(B1 ⊔D)) (3)

B1 ≡ (Block ⊓ ∃pairWith “xsd : T” ⊓ . . .) (4)

D ≡ (Block ⊓ ∃pairWith “xsd : F” ⊓ . . .) (5)

If-else statement. In Figure 3(d) block C is followed by block B1 or block B2 depending
on certain condition. The conditions associated with the choice are captured as string
values for the data type property pairWith.

C ≡ (Block ⊓ = 1 followed by.(B1 ⊔ B2)) (6)

B1 ≡ (Block ⊓ ∃pairWith “xsd : T” ⊓D) (7)

B2 ≡ (Block ⊓ ∃pairWith “xsd : F” ⊓D) (8)

Iteration pattern. This construct is a special decision with a self-reference. Loop can be
specified by breaking it into patterns and writing the concepts accordingly. Figure 3(e)
begins with “C” choice node if condition evaluates to true, node B1 occurs and then
return to choice node again. Otherwise “D” node occurs if the condition is false. Write
concepts corresponding to these patterns as formulated before. This may lead to cyclic
terminology which need not be definitorial [9]. However, argue that this terminology will
have an interpretation which is a fixpoint and hence will have a model. The cycle (due
to the loop) of this terminology contains zero negative arc and so, it will have a fix point
interpretation [9].

C ≡ (Block ⊓ = 1 followed by.(B1 ⊔D)) (9)



502 S. IBRAHIM, Y. F. HASSAN AND M. H. KHOLIEF

B1 ≡ (Block ⊓ ∃pairWith “xsd : true” ⊓ = 1 followed by.C) (10)

D ≡ (Block ⊓ ∃pairWith “xsd : false” ⊓ . . .) (11)

End node. In Figure 3(f) the graph terminates with an end node which is preceded by a
node F.

BF ≡ (Block ⊓ = 1 followed by.End) (12)

Table 1 lists sample axioms corresponding to flow patterns in Figure 3. Here ⊥ denotes
contradiction, similar to owl: “Nothing”.

Table 1. Axiomatization for diagram

Statement OWL-DL axioms
Start, End, Block, Loop
and Path subclasses of
class Node

Start, End, Block, Loop, Path ⊑ Node

precede is the super role
of followed by

followed by o followed by ⊑ precede

Start node has no prede-
cessor

(Node ⊓∀ containedIn. Diagram ⊓ = 1 followed by.Start) ⊑ ⊥

End node has no follower (End ⊓ = 1 followed by.Node) ⊑ ⊥
A Diagram contains
some nodes

Diagram ⊑ ∃ contains.Node

A Diagram begins with a
start node

Diagram ⊑= 1 beginsWith.Start

A Diagram ends on an
end node

Diagram ⊑= endsWith.End

5. A Case Study. This section proposes an approach to generate basic paths of the
graph.

STEP 1 Generate the CFG from source code.

Figure 4. Control-flow graph of program



ICIC EXPRESS LETTERS, VOL.14, NO.5, 2020 503

STEP 2 Calculate Cyclomatic complexity in order to get all the possible paths in CFG
from start to end node: V(G) = 2 predicate nodes + 1 = 3.

STEP 3 According to TBox axioms and ABox axioms specified in Table 1 translate CFG
(see Figure 4) to OWL-DL complex concepts as shown below:

B0 ≡ Start ⊓ = 1 followed by.B1 (13)

B1 ≡ Block ⊓ = 1 followed by.B2 (14)

B2 ≡ Block ⊓ = 1 followed by.B3 (15)

B3 ≡ Block ⊓ = 1 followed by.(B4⊔B9) (16)

B4 ≡ Block ⊓ = 1 followed by.(B5⊔B6) (17)

B6 ≡ Block ⊓ = 1 followed by.B7 (18)

B7 ≡ Block ⊓ = 1 followed by.B8 (19)

B8 ≡ Block ⊓ = 1 followed by.B3 (20)

B9 ≡ Block ⊓ = 1 followed by.B10 (21)

B10 ≡ Block ⊓ = 1 followed by.E (22)

B5 ≡ Block ⊓ = 1 followed by.E (23)

DDG ⊑= 1beginsWith.S. (24)

DDG ⊑= endsWith.E. (25)

STEP 4 Set of paths from above specify:
Path 1: S-B1-B2-B3-B9-B10-E,
Path 2: S-B1-B2-B3-B4-B5-E,
Path 3: S-B1-B2-B3-B4-B6-B7-B8.

6. Conclusions. With the increase in the size of the software, the number of execution
paths also increases, thereby degrading the effectiveness of path testing. The vast number
of test cases, would lead to a very time consuming and costly testing process, which is
impossible to perform. So, this work attempted to show how to integrate semantic tech-
nology with software engineering, specifically software testing to produce higher-quality
software in a time-effective manner at a lower cost.

One of the helpful goals of using Semantic Web technologies in software engineering is
a uniform description of software entities on different levels of abstraction. In light of the
foregoing, ontology is used, specifically OWL-DL ontology, to model and specify control
flow graph by adding semantics to the meaning of control flow graph entities and to the
dynamic behaviour of control flow relations.

Entities and relations of control flow graph are formalized based on OWL-DL to rep-
resent it in such a way that it can easily be used to extra test paths in order to map test
scenarios on them. OWL-DL seems to be the perfect choice for semantically annotating
flow diagram and dynamic behaviour of control flow relations because OWL-DL is the
most well known and most investigated species of OWL which can be seen as an alternate
notation for the Description Logic language SHOIN (D).

Semantic approach is achieved by following these steps: first, the transformation of
the basic control flow patterns to corresponding OWL-DL concepts, and the dynamic
behaviour of control flow relations into OWL-DL object properties. Second, the imple-
mentation of the ontology using Protégé 5.0 software and using built-in reasons to evaluate
the illustrations on it.

REFERENCES

[1] Toprak, Sibel, S. Schupp, A. Wichmann and E. Erklärung, Sibel Toprak Intraprocedural Control Flow
Visualization Based on Regular Expressions, 2014.



504 S. IBRAHIM, Y. F. HASSAN AND M. H. KHOLIEF

[2] P. Ammann and J. Offutt, Introduction to Software Testing, Cambridge University Press, New York,
NY, USA, 2008.

[3] H. J. Happel and S. Seedorf, Applications of ontologies in software engineering, Proc. of Workshop
on Sematic Web Enabled Software Engineering (SWESE) on the ISWC, pp.5-9, 2006.

[4] V. H. Nasser, W. Du and D. MacIsaac, An ontology-based software test generation framework,
InSEKE, pp.192-197, 2010.

[5] S. Dalal, S. Kumar and N. Baliyan, An ontology-based approach for test case reuse, Intelligent
Computing, Communication and Devices, pp.361-366, 2015.

[6] S. Roy, G. S. Dayan and V. D. Holla, Modeling industrial business processes for querying and
retrieving using OWL+SWRL, OTM Conferences, pp.516-536, 2018.

[7] R. Gold, Control flow graph and code coverage, Int. J. Appl. Math. Computer Sci., vol.20, no.4,
pp.739-749, 2010.

[8] D. L. McGuinness and F. van Harmelen, OWL Web Ontology Language Overview, W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-owlfeatures20040210/, 2004.

[9] F. Baader and Nutt, Basic description logics, Description Logic Handbook, pp.43-95, 2003.
[10] M. P. S. Bhatia, A. Kumar and R. Beniwal, Ontologies for software engineering: Past, present and

future, Indian Journal of Science and Technology, vol.9, no.9, 2014.
[11] H. Li, F. Chen, H. Yang, H. Guo, W. C. Chu and Y. Yang, An ontology-based approach for GUI test-

ing, The 33rd Annual IEEE International Computer Software and Applications Conference (COMP-
SAC’09), pp.632-633, 2009.

[12] I. Horrocks, Description Logics in Ontology Applications, Springer-Verlag Berlin Heidelberg, 2005.
[13] H. N. Anjalika, M. T. Y. Salgado and P. I. Siriwardhana, An Ontology-Based Test Case Generation

Framework, 2017.
[14] E. F. Souza, R. A. Falbo and N. L. Vijaykumar, ROoST: Reference ontology on software testing,

Appl. Ontol. J., vol.12, no.1, pp.1-30, 2017.
[15] S. Vasanthapriyan, J. Tian and J. Xiang, An ontology-based knowledge framework for software

testing, in Communications in Computer and Information Science, J. Chen, T. Theeramunkong, T.
Supnithi and X. Tang (eds.), Singapore, Springer, 2017.


