
ICIC Express Letters ICIC International c⃝2020 ISSN 1881-803X
Volume 14, Number 6, June 2020 pp. 571–575

A NOTE ON ACCELERATING THE LOCAL OUTLIER FACTOR
METHOD ON ONE-DIMENSIONAL DATA

Changmuk Kang

Department of Industrial and Information Systems Engineering
Soongsil University

369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
ckang@soongsil.ac.kr

Received December 2019; accepted March 2020

Abstract. The local outlier factor (LOF) method, which is proposed by Breunig et
al. (2000), is one of the most common techniques to detect outliers or abnormal data
points in a dataset. It compares the density of a data point with the densities of its
k-nearest neighbors. This study presents an algorithm to perform LOF much faster than
conventional methods, especially for one-dimensional data. Its worst-case time complex-
ity is only O(nk), and space complexity is O(n). The performance is also computation-
ally compared with the DMwR package, which implements Breunig et al. (2000) in R
language.
Keywords: Local outlier factor, Accelerated algorithm, One-dimensional data

1. Introduction. The local outlier factor (LOF) method is one of the most common
techniques to detect outliers or abnormal data points in a dataset. It is proposed by
Breunig et al. [1] to determine outlierness of a point with its proximity to the neighbors,
rather than its relative position in a whole dataset. According to Aggarwal [2], such
proximity-based models have three types: cluster-based, distance-based and density-based
models. The LOF is a density-based model, which computes density of a data point as
the number of points within its local region and compares it with densities of its k-nearest
neighbors (k-nn). High LOF scores indicate outliers.

This study presents an idea to accelerate the LOF procedure, especially when the
dataset is one-dimensional. Many practical problems, for example, demand forecasting,
lead time estimation, and price provision, need to analyze one-dimensional data. Whereas
outliers of these datasets are usually detected by extreme values, which are statistical
tails of an underlying distribution [2], it may falsely detect outliers if the data is from
multiple heterogeneous distributions. An outlier that is far from two distributions, but
lies between their mode values cannot be detected. For example, the spare-part demand
for an industrial machine has multiple modes depending on failure types and maintenance
policies; occasional breakdowns require one or two spare parts while regular preventive
maintenance requires a bunch of them. The proposed method accelerates processing the
LOF procedure for such kinds of datasets.

The LOF procedure is comprised of two steps: materialization and LOF scoring, and its
time complexity is constrained by the materialization step, which computes distances to
the k-nearest neighbors of each data point. Where there are n data points, the complexity
is O(n·[time for k-nn search]) [1]. The complexity of the k-nn search is worst-case O(n) for
high-dimensional data and on average O(log n) for medium-dimensional data when using
X-tree method [3]. For low-dimensional data, Mouratidis et al. [4] present a constant
complexity search method.

DOI: 10.24507/icicel.14.06.571

571

572 C. KANG

This study suggests a much faster procedure for k-nn search, which takes k steps in
the worst case, and much smaller than k on average. The trick lies in the sortable nature
of one-dimensional data. In the sorted list of values, a neighborhood window can be
shifted from small to large values. The shifting stops at the value that overlaps between
neighborhood windows of two adjacent values, and the worst case occurs when they are
totally disjoint. Thus the materialization complexity is worst-case O(nk). This procedure
is implemented in R language, and the performance is compared with DMwR package,
which implements Breunig et al. [1].

2. Brief Overview of the LOF Procedure. The LOF score represents a relative local-
region density of a data point to its neighbor points. A measure called local reachability
density (LRD) is computed for each data point, and a LOF score is defined as a ra-
tio between LRD of a point and the average LRD of its neighborhood points. As the
neighborhood LRD is higher than its own, it is more likely to be an outlier.
LRD of a data point is an inverse of the average k-reachability distance of its neighbors.

The k-reachability distance of point i from j is defined as Equation (1).

k-reachability distance(i, j) = max{k-distance(j), d(i, j)} (1)

where d(i, j) is distance between i and j, and k-distance(j) is distance between j and its
k-th nearest neighbor. Then, LRD of i for k is defined as Equation (2).

LRD(i, k) = 1/
(
Σj∈N(i,k)k-reachability distance(i, j)

/
|N(i, k)|

)
(2)

where N(i, k) is the set of points no farther than k-nn of i. If more than one point is
equally close to i, N(i, k) could have more than k points. A LOF score of i for k is
computed as Equation (3).

LOF (i, k) =
(
Σj∈N(i,k)LRD(j, k)

/
|N(i, k)|

)/
LRD(i, k) (3)

Therefore, k-nn search is necessary for computing LOF scores.

3. One-Dimensional LOF Algorithm. This section describes the proposed algorithm.
Note that it accelerates LOF calculation by the properties of a sorted list. Henceforth, it is
assumed that a datasetX of n data points is sorted in ascending order, i.e., xi < xj if i < j
where xi, xj ∈ X. Even if X is not sorted, it does not increase the algorithm complexity,
because sorting an unordered list takes O(log n) by the quick sort, and reordering the
resulting LOF scores in the original order also takes O(log n) by the binary search.
The algorithm consists of two steps; k-nn search and LOF scoring. First, k-nearest

neighbors and k-distance of each data point are searched. Because k is a fixed parameter,
we will not specify k in all the following notations for convenience. On the ground that
X is sorted, a neighborhood set of the i-th data point N(i) is a consecutive subsequence
including i. Thus, it is defined by N(i) = [S(i), L(i)] where S(i) and L(i) are indices
of the smallest and the largest neighbors, respectively. Then, the k-distance K(i) is
max{xi − xS(i), xL(i) − xi}. The procedures for searching the sets S, L and K are shown
in Algorithm 1.
For the first data point, its neighborhood is the next k points, like step 0. The main loop

is step 1. For i > 1, index L(i) inherits L(i−1), but S(i) is the kth points before L(i−1),
like step 1.1. It is because N(i − 1) could be more than k points if there are duplicated
values in X. The largest index L(i−1) is inherited since xL(i−1) should also be a neighbor
of xi, whereas xS(i−1) may be not. In step 1.2, if distance from the smallest neighbor xS(i)

is larger than distance from the smallest non-neighbor xL(i)+1, the neighborhood set is
shifted by one step. If they are equally distant, S(i) never drops while L(i)+1 is included
to the neighborhood set. Then the loop stops because there is no closer point after L(i).
If xi = xi − 1, their neighborhood sets are also the same, like step 2. Steps 3 and 4 are
for duplicated values; all equally distant boundary values should be neighbors.

ICIC EXPRESS LETTERS, VOL.14, NO.6, 2020 573

Algorithm 1. Given dataset X and value k,

0. Set i = 1, S(1) = 1, L(1) = k + 1, K(1) = xk+1 − x1.

1. If i > 1 and xi > xi−1,

1.1 Set S(i) = min{L(i− 1)− k, i}, L(i) = max {L(i− 1), i}.
1.2 While dL ≤ dS where dL = xL(i)+1 − xi, dS = xi − xS(i),

1.2.1. Set L(i) = L(i) + 1.

1.2.2. If dL = dS, stop loop and go to 3.

1.2.3. Else, set S(i) = S(i) + 1.

2. Else,

2.1 Set S(i) = S(i− 1), L(i) = L(i− 1), K(i) = K(i− 1).

2.2 Go to 6.

3. While xS(i)−1 = xS(i),

3.1 Set S(i) = S(i)− 1.

4. While xL(i)+1 = xL(i),

4.1 Set L(i) = L(i) + 1.

5. Set K(i) = max{xi − xS(i), xL(i) − xi}.
6. Update i = i+ 1 and go to 2 until i < n.

The next step is LOF scoring. First, the LRDs are calculated, and then LOF scores
are obtained. For LRD calculation, we must examine whether xj, which is a neighbor of
xi, also has xi as its neighbor. If so, k-reachability distance(i, j) is K(j), otherwise, it is
d(i, j), as noted in Equation (1). The proposed method uses Lemma 3.1 to shorten this
step.

Lemma 3.1. If xi is a neighbor of xj, it is also a neighbor of xh where i < h < j or
j < h < i.

Proof: Let i < h < j (the proof is the same for the case of j < h < i). Suppose xi

is not a neighbor of xh; i < S(h). Where L(h) ≤ L(j), the points from S(h) to L(h)
are all neighbors of xj. Because there are at least k points in [S(h), L(h)], point xi,
which is smaller than xS(h), cannot be one of the k-nearest neighbors of xj. It leads to a
contradiction. �

By Lemma 3.1, if xi is a neighbor of xj, other points xh, i < h < j or j < h < i, are
also neighbors of xj; no further examination is required. The procedure for LOF scoring
is shown in Algorithm 2.

Algorithm 2. Given dataset X, index sets S, L and k-distance set K,

0. Set i = 1 and LRD(i) = 0 for all i’s.

1. Set p = S(i), q = L(i).

2. For j = S(i), S(i) + 1, . . . , i− 1,

2.1 If L(j) < i, update LRD(i) = LRD(i) + (xi − xj).

2.2 Else, update p = j and stop loop.

3. For j = L(i), L(i)− 1, . . . , i+ 1,

3.1 If S(j) > i, update LRD(i) = LRD(i) + (xj − xi).

3.2 Else, update q = j and stop loop.

4. Update LRD(i) = {L(i)− S(i)}
/{

LRD(i) + Σj∈[p,q]\{i}K(j)
}
.

5. Update i = i+ 1 and go to 1 until i < n.

6. For i = 1 . . . , n, LOF(i) =
{
Σj∈[S(i),L(i)]\{i}LRD(j)

}/
LRD(i)

/
{L(i)− S(i)}.

For each i, variables p and q are starting and ending indices of the mutual neighbors,
respectively. In step 2, check whether xj is a mutual neighbor of xi from the smallest one,

574 C. KANG

and if it is, let p = j and stop the loop. Likewise, in step 3, let q = j and stop the loop
if xj is the largest mutual neighbor. The neighbors j from p to q, K(j)’s are summed up
in step 4. Steps 4 and 6 follow Equations (2) and (3), respectively.
The time complexity of Algorithm 1 is O(nk) for the worst case. The main loop is

iterated n times, and step 1 repeats at most k times if adjacent points have totally
disjoint neighborhood sets. In the best case, step 1 repeats only once if the neighborhood
window never moves, and it repeats constant times regardless of the value of k. Steps 3
and 4 do not repeat if there is no duplicated point in X. Thus, the average complexity
of Algorithm 1 is O(n).
The time complexity of Algorithm 2 is O(nk) in every case since the summation of k-

distance values and LRD values of k neighbors are required for each data point. Nonethe-
less, it becomes more efficient by eliminating determination of reachability distance be-
tween k-distance and real distance.
The space complexity of the whole procedure is O(n) since all the sets S, L, K, LRD

and LOF are the size of n.

4. Computational Experiment. The performance of the proposed procedure is com-
putationally compared with the lofactor function in the DMwR package of the R lan-
guage [5]. This package implements Breunig et al. [1], and faster than other R implemen-
tations such as Rlof and dbscan packages.
The experiment is conducted for different numbers of data points. The number n

increases from 1,000 to 10,000 by 500. The data points are randomly generated from the
uniform distribution between 0 and 1. The parameter k is fixed with 100 in every case. In
order to stabilize performance fluctuation by the dataset randomness, 30 different datasets
are generated for each n. The proposed procedure (Algorithms 1 and 2) implemented in
R language and the DMwR function are applied to each dataset, and their average of 30
replications are compared.
The result is shown in Figure 1. The DMwR exponentially increases computation

time for large n’s, whereas the proposed procedure linearly increases it. Moreover, the
increasing rate is much lower for the proposed one. For n= 10,000, the proposed procedure
takes only 0.45 seconds while DMwR takes almost 12 seconds.

5. Conclusions. This study proposes a method to accelerate LOF calculation for one-
dimensional data. The k-nn search and LOF scoring procedures are much more efficient

Figure 1. Computation time comparison (in seconds)

ICIC EXPRESS LETTERS, VOL.14, NO.6, 2020 575

for a sorted list. The performance is computationally compared with the DMwR package
in R, and the proposed procedure outperforms it. Whereas one-dimensionality is a special
case of the outlier detection, many datasets for industrial operations, such as demand,
price, processing time, etc, are one-dimensional and can be much more efficiently processed
by the proposed method.

Acknowledgment. This work was supported by the Ministry of Education of the Repub-
lic of Korea and the National Research Foundation of Korea (NRF-2017R1D1A1B0303217
6).

REFERENCES

[1] M. Breunig, H. Kriegel, R. Ng and J. Sander, LOF: Identifying density-based local outliers, Proc.
of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA,
pp.93-104, 2000.

[2] C. C. Aggarwal, Outlier Analysis, Springer, New York, USA, 2015.
[3] S. Berchthold, D. A. Keim and H.-P. Kriegel, The X-tree: An index structure for high-dimensional

data, Proc. of the 22nd International Conference on Very Large Data Bases, Bombay, India, pp.28-
39, 1996.

[4] K. Mouratidis, D. Papadias and M. Hadjieleftheriou, Conceptual partitioning: An efficient method
for continuous nearest neighbor monitoring, Proc. of the 2005 ACM SIGMOD International Con-
ference on Management of Data, pp.634-645, 2005.

[5] L. Torgo, Functions and data for “Data Mining with R”, R Package Version 2.1, 2015.

