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Abstract. This paper investigates the H∞ control for a class of semi-Markovian jump
nonlinear systems with an event-triggered control mechanism. In order to reduce the data
packets sent to the communication network, a mode-dependent event-triggered condition
is adopted to determine which packet can be transmitted. According to the triggering
mechanism, a switched closed-loop system model is established for stability analysis and
control synthesis. Then by employing a new Lyapunov functional, sufficient criteria are
obtained to ensure that the resulting closed-loop system is stochastically stable with a
prescribed H∞ performance. Finally, a numerical example is utilized to illustrate the
usefulness and advantages of the proposed theorems.
Keywords: Semi-Markovian jump systems, Event-triggered control, Nonlinearity

1. Introduction. Markovian jump systems, as an important component of stochastic
switched systems, have been excessively studied during the past decades. Since they can
successfully model the random perturbations and abrupt changes in practice, numerous
methods have been proposed for the stability analysis and system synthesis for different
kinds of Markovian jump systems. However, due to the exponential distribution of Mar-
kovian jump process, it is inevitable that some limitations and conservatism may exist
in the results based on Markovian jump systems. To handle this problem, increasing
attention has been paid to the research on semi-Markovian jump systems since its relaxed
limitations on the probability distributions. Quite a few results have been reported on the
related topics of semi-Markovian jump systems in recent years [1-4]. To mention a few, the
stochastic stability is analyzed for semi-Markovian jump systems with mode-dependent
delays by exploiting a piecewise analysis approach [5]. Via a mode-transition-dependent
sojourn-time distribution, a state feedback controller is designed to achieve the stabiliza-
tion of continuous-time semi-Markovian jump systems [6].

It is well known that most control processes are implemented based on the digital sig-
nals, which thus prompts the study on sampled-data control systems. Traditionally, the
system state or output is sampled with a certain sampling period, which is easy to be
implemented while may bring some redundant data packets to communication network.
Recently, event-triggered control systems have drawn considerable attention owing to its
capacity in dealing with the resource waste of traditional sampled-data systems [7-9].
Under an event-triggered control strategy, only the data packets that satisfy a certain
triggering condition will be transmitted to the network and hence, the communication
resource is efficiently saved. In [10], the event-triggered H∞ filtering is presented for dis-
tributed parameter systems with Markovian switching topology, which reduces the com-
munication burden and also achieves the H∞ disturbance attenuation performance. By
employing a relaxed Lyapunov functional and applying a mode-dependent event-triggered
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strategy, a desired filter together with triggering parameters is co-designed for Markovian
jump systems with general transition probabilities [11].
Based on the discussion above, this paper aims to design an event-triggered controller

to guarantee the stochastic stability and H∞ performance for a class of semi-Markovian
jump systems. Since the nonlinear characteristics are inherent in practical applications,
a nonlinear representation is taken into account in the system model. By establishing a
new Lyapunov functional, which is a switched form subject to the resulting closed-loop
system and also involves the nonlinearity, sufficient conditions are obtained to ensure that
the system is stochastically stable with a desired H∞ performance. In the end, numerical
simulations are provided to show the effectiveness and advantages of the proposed results.
The rest of this paper is organized as follows. The problem description and some

definitions are presented in Section 2. Section 3 establishes the criteria on the stability
analysis and control synthesis. In Section 4, a numerical example is used to show the
effectiveness of the obtained theorems. Finally, Section 5 concludes this work.

2. Problem Statement and Preliminaries. Consider the following semi-Markovian
jump nonlinear system described by

ẋ(t) = A(r(t))x(t) +B(r(t))u(t) + E(r(t))f(x(t)) + F (r(t))w(t), (1)

z(t) = G(r(t))x(t) +H(r(t))w(t), (2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, z(t) ∈ Rp is the
output signal and w(t) ∈ Rq is the external disturbance belonging to square-integrable
function space L2 [0,∞). {r(t), t ≥ 0} represents a continuous-time semi-Markov process
and takes values in a finite set S = {1, 2, . . . , N}, in which N denotes the number of
subsystems. The probability transition of the semi-Markov process r(t) is administrated
by

Pr{r(t+∆) = j|r(t) = i} =

{
πij(∆)∆ + o(∆), i ̸= j

1 + πii(∆)∆ + o(∆), i = j
,

where πij(∆) ≥ 0 is the transition rate from mode i at instant t to mode j at instant
t + ∆ for i ̸= j and πii(∆) = −

∑
i∈S,j ̸=i πij(∆). ∆ > 0 refers to the sojourn time and

lim
∆→0

o(∆)/∆ = 0. A(r(t)), B(r(t)), E(r(t)), F (r(t)), G(r(t)), H(r(t)) are constant real

matrices and simplified as Ai, Bi, Ei, Fi, Gi, Hi for each r(t) = i, i ∈ S. f(·) indicates the
nonlinearity satisfying f(0) = 0 and the following Lipschitz condition ∥f(x1)− f(x2)∥ ≤
C∥x1 − x2∥, where C is known positive diagonal matrix.
In this paper, an event-triggered control mechanism is adopted to determine the instants

{sk, k = 0, 1, 2, . . .} of sending system measurements. Then the controller updates the
control input according to the received measurements and sends it back to the system
plant for the stabilization goal. The event-triggered control mechanism is described as
follows

sk+1 = min
{
s ≥ sk + h|(x(s)− x(sk))

TΩi(x(s)− x(sk)) ≥ εxT (s)Ωix(s)
}
, (3)

where h > 0, 0 ≤ ε < 1 are given constants and Ωi > 0, ∀i ∈ S is the mode-dependent
weighting matrix. Based on this mechanism, the controller for system (1) is given as

u(t) = −Kix(sk), t ∈ [sk, sk+1), (4)

where Ki, i ∈ S is the state feedback controller gain to be designed.
Some definitions are restated here for latter use.

Definition 2.1. [5] The semi-Markovian jump system (1) with w(t) = 0 is said to be

stochastically stable if for any initial values x(0), r(0), lim
t→∞

E
{∫ t

0
∥x(s)∥2ds

∣∣x(0), r(0)} <

∞ holds, where E{.} is the mathematics expectation operation.
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Definition 2.2. [12] For a given scalar γ > 0, the semi-Markovian jump system (1) is said
to be stochastically stable with an H∞ performance index γ, if system (1) is stochastically
stable and under the zero initial values, E

{∫∞
0

zT (t)z(t)dt
}
≤ γ2

∫∞
0

wT (t)w(t)dt holds
for any nonzero w(t) ∈ L2[0,∞).

3. Main Results. According to the section above, the semi-Markovian jump nonlinear
system (1) under event-triggered mechanism (3) and controller (4) can be rewritten as [4]

ẋ(t) = (Ai −BiKi)x(t) +φ(t)τ(t)BiKiv1 +Eif(x(t))− (1− φ(t))BiKie(t) +Fiw(t), (5)

where

φ(t) =

{
1, t ∈ [sk, sk + h)
0, t ∈ [sk + h, sk+1)

, v1 =
1

τ(t)

∫ t

t−τ(t)

ẋ(s)ds,

τ(t) = t− sk ≤ h, t ∈ [sk, sk + h), e(t) = x(sk)− x(t), t ∈ [sk + h, sk+1).

The Lyapunov candidate for system (5) is chosen as

V (t) = xT (t)Pix(t) + φ(t)(Vu(t) + Vx(t)) +
1

λ2

∫ t

0

(
∥Cx(s)∥2 − ∥f(x(s))∥2

)
ds,

Vu(t) = (h− τ(t))

∫ t

t−τ(t)

ẋT (s)Uẋ(s)ds, ξ(t) =
[
xT (t) xT (t− τ(t))

]T
,

Vx(t) = (h− τ(t))ξT (t)

 X +XT

2
−X +X1

∗ −X1 −XT
1 +

X +XT

2

 ξ(t).

Due to the limitation of pages, the following theorems are proposed for stability analysis
and control synthesis with the proof omitted.

Theorem 3.1. For h > 0, 0 ≤ ε < 1, γ > 0, the semi-Markovian jump nonlinear system
(1) under the event trigger (3) is stochastically stable with an H∞ performance index if
there exist matrices Pi > 0, Ωi > 0, ∀i ∈ S, U > 0, Q > 0 and X, X1, Y1, Y2, Y3 such
that for any i ∈ S,

Θi ≥ 0, Ψ1i < 0, Ψ2i < 0, Φi < 0, (6)

where

Θi =

 Pi + h
X +XT

2
hX1 − hX

∗ −hX1 − hXT
1 + h

X +XT

2

 ,

Ψ1i =

 Ψ1i(1, 1) · · · Ψ1i(1, 5)
. . .

...
∗ Ψ1i(5, 5)

 ,

Ψ2i =

 Ψ2i(1, 1) · · · Ψ2i(1, 6)
. . .

...
∗ Ψ2i(6, 6)

 , Φi =

 Φi(1, 1) · · · Φi(1, 5)
. . .

...
∗ Φi(5, 5)

 ,

Ψ1i(1, 1) =
∑
j∈S

πij(∆)Pj + AT
i Q+QAi − Y1 − Y T

1 − X +XT

2
+GT

i Gi +
1

λ2
CTC,

Ψ1i(1, 2) = Pi + h
X +XT

2
−Q+ AT

i Q− Y2,

Ψ1i(1, 3) = Y T
1 −QBiKi − Y3 + (X −X1),

Ψ1i(1, 4) = QEi, Ψ1i(1, 5) = GT
i Hi +QFi, Ψ1i(2, 2) = −2Q+ hU,
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Ψ1i(2, 3) = Y T
2 −QBiKi − (X −X1), Ψ1i(2, 4) = QEi, Ψ1i(2, 5) = QFi,

Ψ1i(3, 3) = Y3 + Y T
3 − 1

2

(
X +XT − 2X1 − 2XT

1

)
, Ψ1i(3, 4) = Ψ1i(3, 5) = 0,

Ψ1i(4, 4) = − 1

λ2
I, Ψ1i(4, 5) = 0, Ψ1i(5, 5) = HT

i Hi − γ2I,

Ψ2i(1, 1) = Ψ1i(1, 1), Ψ2i(1, 2) = Pi −Q+ AT
i Q− Y2, Ψ2i(1, 3) = Ψ1i(1, 3),

Ψ2i(1, 4) = hY T
1 , Ψ2i(1, 5) = QEi, Ψ2i(1, 6) = GT

i Hi +QFi, Ψ2i(2, 2) = −2Q,

Ψ2i(2, 3) = Y T
2 −QBiKi, Ψ2i(2, 4) = hY T

2 , Ψ2i(2, 5) = QEi, Ψ2i(2, 6) = QFi,

Ψ2i(3, 3) = Ψ1i(3, 3), Ψ2i(3, 4) = hY T
3 , Ψ2i(3, 5) = Ψ2i(3, 6) = 0,

Ψ2i(4, 4) = −hU, Ψ2i(4, 5) = Ψ2i(4, 6) = 0,

Ψ2i(5, 5) = − 1

λ2
I, Ψ2i(5, 6) = 0, Ψ2i(6, 6) = Ψ1i(5, 5),

Φi(1, 1) =
∑
j∈S

πij(∆)Pj +GT
i Gi +

1

λ2
CTC + εΩi +Q(Ai −BiKi) + (Ai −BiKi)

TQ,

Φi(1, 2) = Pi −Q+ (Ai −BiKi)
TQ, Φi(1, 3) = −QBiKi, Φi(1, 4) = QEi,

Φi(1, 5) = GT
i Hi +QFi, Φi(2, 2) = −2Q, Φi(2, 3) = −QBiKi, Φi(2, 4) = QEi,

Φi(2, 5) = QFi, Φi(3, 3) = −Ωi, Φi(3, 4) = Φi(3, 5) = 0, Φi(4, 4) = − 1

λ2
I,

Φi(4, 5) = 0, Φi(5, 5) = HT
i Hi − γ2I.

Notice that the inequalities in Theorem 3.1 are difficult to be solved since the time-
varying transition rate πij(∆) and the coupling of variables. By referring to [13], we
assume that

πij(∆) =
T∑

k=1

αkπij,k,
T∑

k=1

αk = 1, αk ≥ 0

and πij,k =


π̂ij + (k − 1)

⌣
πij − π̂ij

T − 1
, i ̸= j, j ∈ S

⌣
πij − (k − 1)

⌣
πij − π̂ij

T − 1
, i = j, j ∈ S

,

where π̂ij and
⌣
πij are the lower and upper bounds of πij(∆), respectively. Based on

this, the following theorem proposes the co-design on controller gains and event-triggered
weighting matrix for the semi-Markovian jump nonlinear system.

Theorem 3.2. For h > 0, 0 ≤ ε < 1, γ > 0, the semi-Markovian jump nonlinear system
(1) under the event trigger (3) is stochastically stable with an H∞ performance index if
there exist matrices P̃i > 0, Ω̃i > 0, K̃i, ∀i ∈ S, Ũ > 0, Q̃ > 0 and X̃, X̃1, Ỹ1, Ỹ2, Ỹ3

such that for any i ∈ S, k = 1, 2, . . . , T ,

Θ̃i ≥ 0, Ψ̃1i,k < 0, Ψ̃2i,k < 0, Φ̃i,k < 0, (7)

where

Θ̃i =

 P̃i + h
X̃ + X̃T

2
hX̃1 − hX̃

∗ −hX̃1 − hX̃T
1 + h

X̃ + X̃T

2

 ,

Ψ̃1i,k =

 Ψ̃1i,k(1, 1) · · · Ψ̃1i(1, 7)
. . .

...

∗ Ψ̃1i(7, 7)

 ,
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Ψ̃2i,k =

 Ψ̃2i,k(1, 1) · · · Ψ̃2i,k(1, 8)
. . .

...

∗ Ψ̃2i,k(8, 8)

 , Φ̃i,k =

 Φ̃i,k(1, 1) · · · Φ̃i,k(1, 7)
. . .

...

∗ Φ̃i,k(7, 7)

 ,

Ψ̃1i,k(1, 1) =
∑
j∈S

πij,kP̃j + Q̃AT
i + AiQ̃− Ỹ1 − Ỹ T

1 − X̃ + X̃T

2
,

Ψ̃1i,k(1, 2) = P̃i + h
X̃ + X̃T

2
− Q̃+ Q̃AT

i − Ỹ2,

Ψ̃1i,k(1, 3) = Ỹ T
1 −BiK̃i − Ỹ3 +

(
X̃ − X̃1

)
, Ψ̃1i,k(1, 4) = Ei,

Ψ̃1i,k(1, 5) = Q̃GT
i Hi + Fi, Ψ̃1i,k(1, 6) = Q̃GT

i , Ψ̃1i,k(1, 7) = Q̃CT ,

Ψ̃1i,k(2, 2) = −2Q̃+ hŨ, Ψ̃1i,k(2, 3) = Ỹ T
2 −BiK̃i −

(
X̃ − X̃1

)
,

Ψ̃1i,k(2, 4) = Ei, Ψ̃1i,k(2, 5) = Fi, Ψ̃1i,k(2, 6) = Ψ̃1i,k(2, 7) = 0,

Ψ̃1i,k(3, 3) = Ỹ3 + Ỹ T
3 − 1

2

(
X̃ + X̃T − 2X̃1 − 2X̃T

1

)
,

Ψ̃1i,k(3, 4) = Ψ̃1i,k(3, 5) = Ψ̃1i,k(3, 6) = Ψ̃1i,k(3, 7) = 0, Ψ̃1i,k(4, 4) = − 1

λ2
I,

Ψ̃1i,k(4, 5) = Ψ̃1i,k(4, 6) = Ψ̃1i,k(4, 7) = 0, Ψ̃1i,k(5, 5) = HT
i Hi − γ2I,

Ψ̃1i,k(5, 6) = Ψ̃1i,k(5, 7) = 0, Ψ̃1i,k(6, 6) = −I, Ψ̃1i,k(6, 7) = 0,

Ψ̃1i,k(7, 7) = −λ2I, Ψ̃2i,k(1, 1) = Ψ̃1i,k(1, 1), Ψ̃2i,k(1, 2) = P̃i − Q̃+ Q̃AT
i − Ỹ2,

Ψ̃2i,k(1, 3) = Ψ̃1i,k(1, 3), Ψ̃2i,k(1, 4) = hỸ T
1 , Ψ̃2i,k(1, 5) = Ei,

Ψ̃2i,k(1, 6) = Q̃GT
i Hi + Fi, Ψ̃2i,k(1, 7) = Q̃GT

i , Ψ̃2i,k(1, 8) = Q̃CT ,

Ψ̃2i,k(2, 2) = −2Q̃, Ψ̃2i,k(2, 3) = Ỹ T
2 −BiK̃i, Ψ̃2i,k(2, 4) = hỸ T

2 ,

Ψ̃2i,k(2, 5) = Ei, Ψ̃2i,k(2, 6) = Fi, Ψ̃2i,k(2, 7) = Ψ̃2i,k(2, 8) = 0,

Ψ̃2i,k(3, 3) = Ψ̃1i,k(3, 3), Ψ̃2i,k(3, 4) = hỸ T
3 ,

Ψ̃2i,k(3, 5) = Ψ̃2i,k(3, 6) = Ψ̃2i,k(3, 7) = Ψ̃2i,k(3, 8) = 0, Ψ̃2i,k(4, 4) = −hŨ,

Ψ̃2i,k(4, 5) = Ψ̃2i,k(4, 6) = Ψ̃2i,k(4, 7) = Ψ̃2i,k(4, 8) = 0, Ψ̃2i,k(5, 5) = − 1

λ2
I,

Ψ̃2i,k(5, 6) = Ψ̃2i,k(5, 7) = Ψ̃2i,k(5, 8) = 0, Ψ̃2i,k(6, 6) = Ψ̃1i,k(5, 5),

Ψ̃2i,k(6, 7) = Ψ̃2i,k(6, 8) = 0, Ψ̃2i,k(7, 7) = −I, Ψ̃2i,k(7, 8) = 0,

Ψ̃2i,k(8, 8) = −λ2I,

Φ̃i,k(1, 1) =
∑
j∈S

πij,kP̃j + εΩ̃i +
(
AiQ̃−BiK̃i

)
+
(
AiQ̃−BiK̃i

)T

,

Φ̃i,k(1, 2) = P̃i − Q̃+
(
AiQ̃−BiK̃i

)T

, Φ̃i,k(1, 3) = −BiK̃i, Φ̃i(1, 4) = Ei,

Φ̃i,k(1, 5) = Q̃GT
i Hi + Fi, Φ̃i,k(1, 6) = Q̃GT

i , Φ̃i,k(1, 7) = Q̃CT , Φ̃i,k(2, 2) = −2Q̃,

Φ̃i,k(2, 3) = −BiK̃i, Φ̃i,k(2, 4) = Ei, Φ̃i,k(2, 5) = Fi, Φ̃i,k(2, 6) = Φ̃i,k(2, 7) = 0,

Φ̃i,k(3, 3) = −Ω̃i, Φ̃i,k(3, 4) = Φ̃i,k(3, 5) = Φ̃i,k(3, 6) = Φ̃i,k(3, 7) = 0,

Φ̃i,k(4, 4) = − 1

λ2
I, Φ̃i,k(4, 5) = Φ̃i,k(4, 6) = Φ̃i,k(4, 7) = 0,

Φ̃i,k(5, 5) = HT
i Hi − γ2I, Φ̃i,k(5, 6) = Φ̃i,k(5, 7) = 0, Φ̃i,k(6, 6) = −I,

Φ̃i,k(6, 7) = 0, Φ̃i,k(7, 7) = −λ2I.
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Then the controller gains can be given by Ki = K̃iQ̃
−1, ∀i ∈ S.

4. A Numerical Example. Consider a semi-Markovian jump nonlinear system with
the following parameters:

A1 =

[
1.1555 −0.4006
−0.4470 −0.7930

]
, A2 =

[
−0.0274 0.0249
−0.3835 0.3026

]
,

B1 =

[
1
1

]
, B2 =

[
1
0

]
, E1 =

[
0.01
0.02

]
, E2 =

[
0.05
0.01

]
,

G1 =

[
0.01 0
0 0.02

]
, G2 =

[
0.01 0
0.01 0.01

]
,

F1 =

[
0.01
0.01

]
, F2 =

[
0.02
−0.01

]
, H1 =

[
0.2
−0.1

]
, H2 =

[
0.1
0.1

]
.

The time-varying transition rates are set as π12(∆) ∈ [0.76, 0.8], π21(∆) ∈ [0.45, 0.5].
The nonlinear function is chosen to be f(x(t)) = x1(t) cos(t) and the external distur-
bance is w(t) = 0.1e−3t. With h = 0.1, ε = 0.1, γ = 1, we solve the inequalities
in Theorem 3.2 and obtain the following controller gains K1 = [ 4.1436 −0.8932 ],
K2 = [ 1.6738 −0.8494 ]. The corresponding state trajectory of the closed-loop system
and the evolution of event triggering are drawn in Figure 1. Clearly, the semi-Markovian
jump nonlinear system is stabilized with a prescribed H∞ performance under the designed
controllers and event-triggered mechanism. In this case, the amount of data transmis-
sion is computed to be 83 over the running time, while by using the traditional periodic
sampling method, the amount will be 150 with the same period h = 0.1. Hence, the
superiority and advantages of the proposed results are demonstrated by the numerical
simulations.

Figure 1. State trajectory of closed-loop system and the evolution of event trigger

5. Conclusions. This paper is concerned with the event-triggered H∞ control for a class
of continuous-time semi-Markovian jump systems with nonlinearities. A mode-dependent
event-triggered mechanism is introduced to reduce the amounts of data sending, which
thus saves the limited communication resource. By establishing a switched closed-loop
system model and employing a new Lyapunov functional, sufficient criteria are developed
to guarantee the stochastic stability and H∞ performance of the event-triggered control
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system. In the end, the usefulness and superiority of the obtained results are verified by
a numerical example. In the further study, we would extend the current research to more
complex cases, such as singular semi-Markovian jump systems, fuzzy semi-Markovian
jump systems and semi-Markovian jump systems with unknown probability transitions.
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