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Abstract. Retinopathy disease is a type of retinal disorder, which often occurs, includ-
ing hypertensive retinopathy and diabetic hypertension. Detection of retinopathy can be
by analyzing the retinal image, using a deep learning approach, but the problem that is
often faced is unbalanced data. In this study, a convolutional neural network architec-
ture is proposed for the classification of retinopathy using the MESSIDOR database that
has been labeled, by duplicating and augmentation of sample images in classes with low
numbers of samples using a data generator to overcome the problem of unbalanced data.
The experimental results show that the validation and testing accuracy performance on
the model with two output classes are 100%, and 87.50%, while on the model with four
output classes are 99.38%, and 76.47%.
Keywords: Deep learning, Convolutional neural network, Retinopathy diseases, Image
classification, Unbalanced data

1. Introduction. Retinal images are a critical factor for ophthalmologists in the diag-
nosis of several eye diseases. Retinopathy is one type of disease in the retina of the eye,
with retinal microvascular signs, which occurs in response to the presence of high blood
pressure or diabetes in the patient [1]. The physical symptoms of retinopathy are nar-
rowing of retinal vessels, while other major signs are retinal hemorrhage and cotton wool
spots. Traditionally, ophthalmologists use fundus images or retinal images of the eye, to
evaluate the presence of retinopathy and to define the evolutionary phase, but traditional
methods have limitations, in the case of early symptoms of retinopathy it will be difficult
to identify manually, so often ignored [2].

Research on the identification of retinopathy through retinal image has been done
before, such as diagnosis of hypertension retinopathy using multiscale filtering and mor-
phological methods based on the Ratio of Arterial and Venous (AVR) vessels have been
performed by [3] and using Radon Transform [4]. While [5] performed a diagnosis of
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hypertension retinopathy based on arterial and venous features of retinal images using
four classification methods: Artificial Neural Networks (ANN), Support Vector Machine
(SVM), Näıve Bayes and Decision Tree. These studies still use preprocessing algorithms
and feature extraction segmentation, before the classification process.
Research on the classification of diabetic retinopathy has also been proposed by [6] using

the Convolutional Neural Network (CNN). It uses 12 convolutional layers, thus involving
many parameters in the model which results in greater computational complexity of the
model training process. [7] conducted diabetic retinopathy classification using SVM Soft
Margin. Classification using the random forest technique based on the area and perimeter
of the blood vessels and hemorrhages is proposed by [8]. All of these studies also still use
preprocessing algorithms and image feature extraction before the classification process. In
this study we applied a deep learning method, in which the process of feature extraction
and classification of retinopathy are directly carried out on CNN, which has been widely
implemented for image classification, including by [9] to detect plant nutrient deficiency
based on plant images, and research by [10] for the classification of shape images.
This paper is organized as follows. After the Introduction section, Section two presents

our method of pre-processing the retinal image, CNN architecture for classification of
retinopathy diseases and solutions to deal with class imbalances. Section three shows the
experiments and results. Finally, the fourth section will conclude the study.

2. Methodology.

2.1. Convolutional Neural Network (CNN). CNN consists of various layers and
several neurons on each layer. Both of these are difficult to determine using definite rules
and apply differently to different data [11]. CNN operates in the sequence layer by layer,
as illustrated in Figure 1 and Table 1 shows the detailed configuration of the deep learning
model for retinopathy classification which is the adoption and development of research by
[12].

Figure 1. (color online) Model architecture

2.1.1. Input layer. Input layer xl in the form of a 3rd order tensor, where xl ∈ RHl×Wl×Dd

is a representation of the colored image of the size of H row, column W , and D color
channels. In this case H = 256, W = 256, and there are three channels of red canal (R),
green channel (G) and blue channel (B), so the number of image elements is 256×256×3
and each element is designated by index (i, j, d), where 0 ≤ i < H, 0 ≤ j < W and
0 ≤ d < 3.
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Table 1. Model configuration

No Layer Number of neurons Padding
Number
of kernels

Filter
kernel size

Stride

1 Input 256× 256× 3 − − − −
2 Convolutional 256× 256 2 32 3× 3 1
3 ReLU 256× 256 − 32
4 MaxPool 128× 128 − 32 2× 2 2
5 Convolutional 128× 128 2 64 3× 3 1
6 ReLu 128× 128 − 64
7 MaxPool 64× 64 − 64 2× 2 2
8 Convolutional 64× 64 2 96 3× 3 1
9 ReLu 64× 64 − 96
10 MaxPool 32× 32 − 96 2× 2 2
11 Convolutional 32× 32 2 128 3× 3 1
12 ReLU 32× 32 − 128
13 MaxPool 16× 16 − 128 2× 2 2
14 Full-Connected 16× 16× 128 = 32, 768
15 Output Softmax 2 or 4

2.1.2. Convolutional layer. The convolutional layer wl uses multiple convolutional kernels.
It assumed the kernel D and each kernel of H ×W used, all kernels denoted as f , where
f is a 4th order tensor with RH×W×Dl×D and the index variable 0 ≤ i < H, 0 ≤ j < W ,
0 ≤ dl < Dl and 0 ≤ d < D are used to point to one of the kernel elements.

Stride (s) is the concept of the convolution process, where if the value of s = 1, then
the convolution process is carried out using a kernel matrix size H × W that shifts to
each pixel location of the input image, whereas if the value of s > 1, then the distance is
shifted by s pixel. The convolution process is expressed through the following equation:

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

dl∑
dl=0

fi,j,dl,d × xl
il+1+i,jl+1+j,dl + bd (1)

for all 0 ≤ d ≤ D = Dl+1, as well as for any spatial location
(
il+1, jl+1

)
for 0 ≤ il+1 <

H l −H +1 = H l+1, 0 ≤ jl+1 < W l −W +1 = W l+1 and xl
il+1+i,jl+1+j,dl

refers to elements

of xl at locations with indices
(
il+1 + i, jl+1 + j, dl

)
. The bias constant (bd) is added to

Equation (1) with a value of 1.

2.1.3. ReLU layer. The ReLU layer does not change the input size, where xl and y are
the same size. The Rectified Linear Unit (ReLU) layer can be considered as the transfer
function of each of the input elements as:

yi,j,d = max
{
0, xl

i,j,d

}
(2)

where 0 ≤ il+1 < H l = H l+1, 0 ≤ j < W l = W l+1 and 0 ≤ d < Dl = Dl+1, within the
ReLU layer, there is no learning parameter as found in the pooling layer.

2.1.4. Pooling layer. The pooling operator maps each subpart into a single value. This
study used max pooling, where the maximum pooling operator maps the sub-section to
the largest value of the element in the sub-section. The following is the mathematical
equations of max pooling:

max: yil+1,jl+1,d = max
0≤i<H,0≤j<W

xl
il+1×H+i,jl+1×W+j,dl (3)

where 0 ≤ il+1 < H l, 0 ≤ jl+1 < W l+1 and 0 ≤ d < Dl+1 = Dl.
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2.1.5. Fully connected layer. Fully connected layer is a layer where there exists a calcu-
lation relationship of each element in the input layer xl to each element of the output
layer xl+1 or y. In the CNN model, the fully connected layer is located between the
convolutional layer and the output layer.

2.1.6. Output layer. The output layer present in the last layer of CNN to the normal-
ized exponential function or softmax is a generalization of the logical function of a k-
dimensioned z vector into a k-dimensioned σ(z) vector with a real number value between
[0, 1]. The softmax function is written in the following equation:

σ : RK → [0, 1]K (4)

σ(z) =
ezj∑K
k=1 e

zk
for j = 1, . . . , K (5)

where σ is softmax notation symbol, z is a vector of the inputs to the output layer,
K is dimensions of vector z, and j is the index of the output unit. Table 1 shows the
specifications of the model configuration.

2.1.7. Computational complexity. Referring to [13-15], the total computational complex-
ity of the model is shown in the following equation:

o

((
d∑

i=1

ni−1s
2
inim

2
i

)
+

(
l∑

j=1

kj log kj

))
(6)

where i is the index of the convolutional layer, and d is the depth or number of convolu-
tional layers. ni is the number or width of the filter in the ith layer. ni−1 is the number
of input channels of the ith layer. si is the spatial size or length of the filter. mi is the
spatial size of the output feature map. l is the number of fully-connected layers and kj
is the number of nodes in the jth fully-connected layer, including the output layer. The
computational complexity of the model becomes a reference in the design of the classifi-
cation model, although the actual running time is very sensitive to the implementation
and environment of the hardware system used.

2.2. Dataset. In this study, we used input data from MESSIDOR (Methods to evaluate
segmentation and indexing techniques in the field of retinal ophthalmology) [16]. MES-
SIDOR database consists of 1200 eye fundus color digital images saved as uncompressed
TIFF format, 588 images with dimensions of 1440 × 960 pixels, 400 images with dimen-
sions of 2240× 1488 pixels and 212 images with dimensions of 2304× 1536. Every image
has been labeled by the medical experts into 4 class labels [17].
Table 2 shows the details of class labeling and the number of images for each class

according to the annotations specified in the MESSIDOR database. The number of im-
ages for each class is not balanced, and then in some the class is reduced and added by
duplicating and augmenting the image in the same class. Resizing input images is needed
to reduce the complexity of input data. In this study, all input images were resized to
256× 256 pixels using Bicubic Interpolation.

3. Experiments and Results.

3.1. Training network. The number of training data is 1200 images, 720 images for
training, and 480 images for validations. The dimension of the image input on this model
is 256 × 256 pixels. The batch size is 16 and the learning rate value is 0.0001. Then
the loss function uses Adam optimization. The image augmentation process in this study
was used by changing the scale of image input pixel values from the range [0, . . . , 255] to
[0, . . . , 1]. Then the image is shifted and scaled with a range of shear and zoom values
of 0.2, then rotated counterclockwise and enlarges the image to produce new image data
that is different from the original image input. The batch size is 16, where 16 training
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Table 2. Number of images for each class

Category

MESSIDOR database Data training set for 4 classes Data training set for 2 classes

Class
label

Number of
images

Used
Number of
duplicated
images

Number of
images

Class
label

Used
Number of
duplicated
images

Number of
images

Normal 0 546 300 0 300 0 546 56 600
Retinopathy
Grade 1

1 153 153 147 300

1

140 0

600
Retinopathy
Grade 2

2 247 247 53 300 227 0

Retinopathy
Grade 3

3 254 254 46 300 233 0

(a) (b)

(c) (d)

Figure 2. (a) Loss, (b) accuracy of the model with 2 output classes and
(c) loss, (d) accuracy of the model with 4 output classes

data are taken randomly from all sample datasets for each epoch until all epochs reach
the sample limit.

Training is executed on a computer with specifications processor Intel Core i7-7500U
processor specifications, 12 GB RAM, GPU: NVIDIA GeForce GTX 960, Windows 10
operating system, Python 3.6 Programming Language with an editor Jupyter notebook.
Figure 2 shows the trend loss and accuracy of the training process and the validation of
the two models is almost the same, where up to 200 epochs, in the model with 2 output
classes, the loss in the training process is 6.89%, and loss in the validation process is 2.38%,
the accuracy of the training process is 97.50%, and the accuracy of the validation process
is 100%. While the model with four output classes, the loss in the training process is
4.13% and the loss in the validation process is 2.18%, the accuracy in the training process
is 98.67% and the accuracy of the validation process is 99.38%.
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3.2. Testing model. We use 30 images as independent sample test data. Model perfor-
mance measured using a performance matrix using three performance measure parame-
ters, namely Specificity, Accuracy, and Precision [18], each of which is defined as follows:

Specificity = TP/(TP + FN) (7)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (8)

Precision = TP/(TP + FP) (9)

where True Positive (TP) is image class x is classified as image class x, True Negative
(TN) is image non-class x, classified as image non-class x, False Positive (FP) is image
non-class x, classified as image class x, False Negative (FN) is image class x, classified as
image non-class x.
The Specificity, Accuracy, and Precision values of the model testing result with two

output classes are 93.33%, 87.50%, and 93.33%, while the models with four output classes
have Specificity, Accuracy, and Precision values being 86.67%, 76.47%, and 86.67% re-
spectively. Table 3 shows a comparison of the performance of retinopathy classifications
between the proposed methods and those of other previous researchers. Our method has
the highest validation accuracy compared to the previous related work, which is 100% on
model with two output classes and 99.38% on model with four output classes. However,
testing accuracy only reaches 87.50% on model with two output classes and 76.47% on
model with four output classes.

Table 3. Performance comparison of retinopathy classification

Author Method Database Accuracy (%)

Manikis et al. [3] Multiscale Filtering
DRIVE
STARE

93.71
93.18

Noronha et al. [4] Radon Transform STARE 92.00

Abbasi and Akram [5]

ANN
SVM

Näıve Bayes
Decision Tree

Local
Database

76.00
75.00
68.00
81.00

Pratt et al. [6] CNN Kaggle 70.00
Tjandrasa et al. [7] SVM MESSIDOR 90.54
Jain and Ganotra [8] Random Forest STARE 90.00
Proposed Method CNN MESSIDOR 87.50

4. Conclusion. In this paper, we propose CNN architecture for the classification of
retinopathy, in the case of unbalanced data, using a database of retinal images labeled
from MESSIDOR. Unbalanced data is overcome by oversampling techniques through du-
plication and augmentation of retinal images in the minority class, as well as undersam-
pling techniques, by selecting some data in the majority class. The experimental results
show that a model that uses two output classes produces better validation and testing
accuracy than a model with four output classes 100% and 87.50% respectively. Our future
work is tuning the model by involving the drop-out process and using different machine
learning to get better model performance.
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