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Abstract. The paper relies on the clinical data of a previously published study. We
identify two very questionable assumptions of said work, namely confusing evidence of
absence and absence of evidence, and neglecting the ordinal nature of attributes domains.
We then show that using an adequate ordinal methodology such as the Dominance-based
Rough Sets Approach (DRSA) can significantly improve the predictive accuracy of the
expert system, resulting in almost complete accuracy for a dataset of 100 instances.
Beyond the performance of DRSA in solving the diagnosis problem at hand, these results
suggest the inadequacy and triviality of the underlying dataset. We provide links to open
data from the UCI machine learning repository to allow for an easy verification/refutation
of the claims made in this paper.
Keywords: Decision support systems, Expert systems, Dominance-based rough sets
approach, Diagnosis, Seminal quality

1. Introduction. Reports of a global decline in male fertility and declining sperm counts
[1] have engendered significant academic interest in investigating the causes of this pub-
lic health challenge. Among numerous approaches to undertake this challenge, artificial
intelligence techniques offer promising decision support to clinicians in the detection of
male fertility issues. In this regard, the classification of human sperm morphometry based
on set standards has been a very successful line of research. Indeed, the visual appear-
ance of sperm has been shown to correlate to male fertility potential [2] and automatic
image processing techniques [3] can detect abnormal sperm shapes. An exhaustive study
in [4] compared four supervised learning methods (1-Nearest Neighbor, Naive Bayes, de-
cision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu
moments, Zernike moments and Fourier descriptors) for this task, finding that the best
classification performance was achieved by the Fourier descriptor and SVM. More recently,
deep learning techniques [5, 6] have been successfully applied to the same problem.

Another fruitful line of research aims at the early detection of male fertility issues based
on lifestyle factor, which can indeed increase the success rate of treatment. However,
despite their promises and predictive power, the performance of this approach is highly
dependent on the quality and representativeness of the collected data. Thus, the present
paper intends to highlight some existing limitations in the measurement of this aspect.
We rely on the clinical data of [7], referred to as the “Assisted Reproduction” dataset,
which was made publicly available on the UCI Machine Learning repository [8], by the
first author of that publication, and used as a reference dataset by many studies [9, 10, 11].
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2. Data and Previous Results. The dataset records 9 attributes pertaining to the
lifestyle habits, socio-demographic and environmental factors and health status of 100
volunteers aged 18 to 36 years, who provided a semen sample analyzed according to the
WHO 2010 criteria [12]. Based on this analysis, volunteers were classified into two classes
normal (N), or altered (O), based on the sperm concentration they present. Table 1
lists and describes the attributes characterizing each volunteer. Figure 1 and Figure 2
respectively present the attribute values presented by normal and altered cases, in parallel
coordinates form.

Table 1. List of attributes with their initial domains and normalized values

Attribute Description Domain Normalization

Season
Season in which the analy-
sis was performed

{Winter, Spring, Sum-
mer, Fall} {−1,−0.33, 0.33, 1}

Age
Age of the volunteer at the
time of analysis

[18, 36] [0, 1]

Disease

Childish diseases (i.e., chic-
ken pox, measles, mumps or
polio)

{Yes, No} {0, 1}

Trauma Accidents or serious trauma {Yes, No} {0, 1}
Surgery Surgical interventions {Yes, No} {0, 1}

Fever High fevers in the last year

{Less than three mont-
hs ago, More than thr-
ee months ago, No}

{−1, 0, 1}

Alcohol Frequency of alcohol
consumption

{Several times a day,
Every day, Several
times a week, Once a
week, Hardly ever or
never}

{0.2, 0.4, 0.6, 0.8, 1}

Smoking Smoking habit
{Never, Occasionally,
Daily} {−1, 0, 1}

Sitting
Number of hours spent sit-
ting per day

[0, 16] [0, 1]

Output Diagnosis {Normal, Altered} {N,O}

This binary classification problem consists in predicting the Output, given the values of
attributes Season, Age, Disease, Trauma, Surgery, Fever, Alcohol, Smoking and Sitting.
To address this problem, the authors compare the performance of three Artificial Intel-

ligence methods, Decision Trees (DT), MultiLayer Perception (MLP) and Support Vector
Machines (SVM), using the following classical performance indicators based on the num-
bers of True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN) in the classification of the available 100 cases.

• Classification accuracy (%) = TP+TN
TP+FP+FN+TN

× 100

• Sensitivity (%) = TP
TP+FN

× 100

• Specificity (%) = TN
FP+TN

× 100

• Positive predictive value (%) = TP
TP+FP

× 100

• Negative predictive value (%) = TN
FN+TN

× 100

Results for the three methods, as they appear in [7] are presented in Table 3.
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Figure 1. Parallel coordinates of the attribute values presented by Normal cases

Figure 2. Parallel coordinates of the attribute values presented by Al-
tered cases

3. Literature Review. We discuss two inconsistent assumptions in [7], namely confus-
ing evidence of absence and absence of evidence (the former does not appear in envi-
ronmental and lifestyle factors) and neglecting ordinal properties of attributes’ domains.
Thus the first questionable assumption of [7] lies in learning symmetrically from “Normal”
and “Altered” cases. Indeed, there is a difference in nature between these two classes, in
that the presence and interactions of the considered environmental factors can cause an
Altered output. However, the absence of these environmental factors does not “cause”,
nor explain a Normal output. Consequently, we propose that learning should focus on
the “Altered” class, the “Normal” class being considered a default class. Secondly, the
environmental, lifestyle and occupational factors modeled by the classification attributes
considered in [7] are known to negatively affect male fertility, which is admittedly the
reason why they were considered in the survey of volunteers in that study. From a deci-
sion theoretic perspective, this means that attributes and classes are of an ordinal nature
[13] and thus classification should be monotonic [14]. For instance, all other factors be-
ing equal a patient who consumes alcohol more frequently cannot generate a “Normal”
output, when a patient who consumes less alcohol generates an “Altered” output.

More formally, for data of an ordinal nature, the monotonicity requirement [15, 16]
states that given two objects a and b to be classified, if a presents values that are no worse
than those presented by b, on each attribute, then a classification system should assign a
to a class that is ranked at least as high as the class a is assigned. For the classification
problem at hand, this property means that for the same season of analysis, the output of
formally consistent classification system, for an older subject b who would present more
severe values for childish disease, trauma, surgery, fever, alcohol consumption, smoking
and would sit longer than a subject b, cannot be “Normal”, when the output for b is
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“Altered”. The three classification methods considered in [7] (DT, MLP and SVM) do
not ensure that this common sense property is satisfied. In addition to ensuring the formal
consistency of a classification system when the input and output are of an ordinal nature,
ensuring that a classification system satisfies the monotonicity requirement facilitates
the detection of inconsistencies among learning examples and substantially reduces the
number of classification rules [15].

4. Proposed Approach. The Dominance-based Rough Sets Approach (DRSA) is an
extension of the classical rough theory introduced by Pawlak [17] that explicitly gives
consideration to attributes of an ordinal nature [18]. This approach is based on the
dominance binary relation and computes two sets, known as the upward and downward
unions associated for each class of the output.
The upward union associated with a class is composed of said class and all classes

ranked higher, when the downward union the considered class and all classed ranked
lower. Similarly, given a learning case a, the dominating set associated with it is defined
as the set of all learning cases whose values on all attributes are at least as high as those
of a. Finally, the dominating set associated with a is the set of all learning cases that do
not present any value that is higher than that presented by a, on any attribute.
Logical rules induced through the DRSA aim at approximating the upward or downward

unions of classes and have a classical “If (Conditions) Then (Output)” form, in which
(Conditions) is a conjunction of elementary conditions in the form of lower or upper
bounds on the attributes, and (Output) is an assignment to an upward downward union
of classes. For the upward union Cl≥ (resp. the downward union Cl≤) of an output class
Cl≤, the induced logical rules would suggest that an object satisfying their corresponding
logical conditions should be assigned at least (resp. at most) to class Clt.
Finding a rule base G that would exhaustively cover all learning cases, with a minimum

number of rules is known to be an NP-Hard problem [19]. The DOMLEM algorithm [18]
aims at minimizing this number heuristically. Given a set of attributes F , let us denote
by F ′ ⊆ F a subset of attributes over which the elementary conditions of rules are stated,
E denotes a conjunction of elementary conditions e, that is candidate to constituting the
condition part of an elementary condition, while [E] is the notation for a set of cases
covered by E. In the DOMLEM algorithm E would be accepted as the condition part of
a rule, if and only if ∩e∈E[e] ⊆ B, where B is an upward or downward union of classes
considered as input. The choice of elementary conditions e that would become part of
conjunction E is based on the evaluation of E ∪{e} by a function denoted Evaluation().
Several versions of this function may be used.
The version of the algorithm used here chooses the elementary rule providing the largest

ratio |[E∪{e}]∩G|
|[E]∪{e}| , in a strategy that consists in covering the maximum number of cases

with the minimum number of elementary conditions. An alternative strategy would, for
instance, aim at choosing the elementary rule e that minimizes the number of currently
uncovered cases verifying it. To ensure minimality rules are checked iteratively redundant
elementary conditions and rules are removed from the final rule base.
As previously stated, for the problem at hand, we consider the “Normal” class to be

a default class and focus learning on the downward union associated with cases from the
“Altered” class (that is the class itself). Table 2 presents the resulting rule base of nine
rules, to which we add a tenth rule assigning to the “Normal” class if none of the previous
rules is satisfied.

5. Results and Discussion. Table 3 and Figure 3 compare the performance metrics
of this classification system (DRSA) to those obtained in [7]. As can be observed, the
dataset of 100 cases can be described almost exhaustively (98% accuracy) by the set of
ten rules presented in Table 2. Further, the 2% inaccurate classification results from an
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Table 2. Classification rules induced by the dominance-based rough sets approach

Rule Logical expression Support
Rule 1 If (Sitting = 0.06) & (Season = −0.33) Then (Output = O) 9.09%

Rule 2
If (Sitting = 0.25) & (Age ≤ 0.69) & (Surgery = 1) & (Disease
= 1) Then (Output = O)

9.09%

Rule 3
If (Sitting = 0.31) & (Surgery = 1) & (Trauma = 0) Then (Out-
put = O)

9.09%

Rule 4
If (Sitting = 0.38) & (Season = 1) & (Alcohol ≤ 0.80) Then
(Output = O)

27.27%

Rule 5 If (Sitting = 0.44) & (Season = 0.33) Then (Output = O) 9.09%

Rule 6
If (Sitting = 0.44) & (Season = 1) & (Fever = −1) Then (Output
= O)

9.09%

Rule 7 If (Sitting = 0.50) & (Disease = 0) Then (Output = O) 18.18%

Rule 8
If (Sitting = 0.50) & (Season = 0.33) & (Smoking = −1) &
(Surgery = 0) Then (Output = O)

9.09%

Rule 9 If (Sitting = 0.88) & (Fever = −1) Then (Output = O or N) 100.00%
Rule 10 Else (Output = N) 100.00%

Table 3. Confusion matrix and performance indicators

MLP [7] SVM [7] DT [7] DRSA
TP 80 83 82 88
TN 6 3 2 12
FP 9 12 13 1
FN 5 2 3 1

Accuracy (%) 86.00 86.00 84.00 98.03
Sensitivity (%) 94.11 97.64 96.47 98.87
Specificity (%) 40.00 20.00 13.33 92.30

Positive Predictive Value (%) 89.88 87.36 86.31 98.87
Negative Predictive Value (%) 54.54 60.00 40.00 92.30

inconsistency in the original dataset, where cases number 67 and 71 present the exact
same attribute values but are part of two different classes. The metrics achieved by
DRSA in Table 3 and Figure 3 are thus the highest possible for this dataset and rather
than indicating the performance of this approach, they clearly indicate the triviality of
the original clinical dataset of [7], which was somehow hidden by the sub-optimal results
obtained by methods MLP, SVM, DT in the original publication.

Despite the triviality of the reference dataset [8] and its small size of 100 instances,
conclusions have been drawn by past studies concerning not only the relative technical
merits of different machine learning methods [7], but also on medical aspects such as the
importance of lifestyle factors on male fertility [9]. Thus, we insist on the importance of the
representativeness of data in any machine learning endeavor and call for the development
of objective statistical standards concerning the quality of datasets from which technical
and medical conclusions can be drawn. As our results highlight, algorithmic accuracy
indicators not only do not reflect the quality of datasets but can more worryingly hide
the poor quality of some datasets with high but sub-optimal values.

6. Conclusion. In this research, the dominance-based rough sets approach was utilized
on a widely studied reference dataset from the UCI machine learning repository. Due to
the monotonic nature of the considered features, the proposed algorithm unsurprisingly
outperformed previous machine learning approaches and highlighted serious issues with



658 N. DEHOUCHE

(a) Accuracy (b) Sensitivity

(c) Specificity (d) Negative predictive value

(e) Positive predictive value

Figure 3. Performance indicators

the quality and representativeness of the reference dataset. Although, there exist elabo-
rate statistical indicators for the performance of machine learning methods on particular
datasets, our results suggest a gap in the literature concerning the nonexistence of ob-
jective standards for the measurement of data quality ex-ante, that is before a particular
machine learning approach is considered. For instance, the explicit definition of conditions
to be satisfied by the data (see for instance, conditions 1 to 4 of [20] in the context of
natural language processing) seems to be a good practice that would warrant extension
to medical diagnosis datasets.
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