
ICIC Express Letters ICIC International c⃝2020 ISSN 1881-803X
Volume 14, Number 7, July 2020 pp. 669–677

DESIGN OF AN ORIGINAL ARCHITECTURE CPU SUN32

Chihiro Koyama and Naohiko Shimizu

Department of Embedded Technology
School of Information and Telecommunication Engineering

Tokai University
2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan

9bjnm012@mail.u-tokai.ac.jp; nshimizu@keyaki.cc.u-tokai.ac.jp

Received January 2020; accepted April 2020

Abstract. We designed and implemented an SoC and software toolchains for the sys-
tem. This system includes original RISC processor sun32, peripheral such as interrupt
controller, timer, UART. The SoC is written in NSL (high-level synthesis language).
We have ported an ANSI C compiler, binutils and FreeRTOS for this system. Through
this project, we can acquire inclusive knowledge of hardware and software domains. We
present the implementation result of this SoC, the software toolchains, Dhrystone bench-
mark result, difficulties in the project and effectiveness of knowledge acquisition of hard-
ware and software through this project.
Keywords: SoC, FreeRTOS, Original RISC processor, Binutils, ANSI C compiler

1. Introduction. In recent years, Internet of Things (IoT) is gaining attention from
industry and academia [1]. The IoT relies on Micro Control Unit (MCU), sensors as
devices. Embedded system used in IoT typically has constraints on power consumption,
realtimeness, low foot print of memory [2]. Real-Time Operating System (RTOS) is one
of the choices for the system which offers low power consumption, realtimeness with de-
terministic execution in relatively small amount of memory. Task dispatcher in RTOS
depends interrupt from timer or software. To develop applications on RTOS, we need
to understand behavior of RTOS itself and clock by clock behavior of underlying MCU
interrupt. Components from software and hardware domains complicatedly form whole
computer systems. Therefore, we need inclusive knowledge of both hardware and software
including processor, interrupt, toolchains, simulation tools. However, practical processors
such as x86, MIPS, and ARM are too complex; thus they are difficult to understand the
architectural and implementational details to use practically. To learn about computer
system, the best way is to design and build actual system [3]. In our laboratory, we
developed processors for education. We have used VAX-11/780 compatible processor [4],
PDP-11 compatible processor named POP11 [5], i8086 compatible processor [6] for the
education in hardware such as processor and OS such as UNIX V6 for software. These
systems prove that they are highly effective for engineer education. However, due to the
nature of CISC, the processors themselves have complicated instructions and they are
difficult to learn clock by clock behavior of processor internals. To simplify and minimize
time to learn, RISC processors are suitable. We design and develop a simple and mini-
mum computer system suitable for booting FreeRTOS to acquire inclusive knowledge of
both hardware and software effectively in the course of design and development. In this
paper, we report effectiveness of knowledge acquisition through designing and implement-
ing minimum computer system. Chapter 2 presents related work, Chapter 3 presents
overview of sun32 ISA and its implementation, Chapter 4 presents process to support
and port software toolchains like compiler, binutils, FreeRTOS for this system, Chapter

DOI: 10.24507/icicel.14.07.669

669



670 C. KOYAMA AND N. SHIMIZU

5 presents verification of the processor with Dhrystone benchmark software and Chapter
6 discusses summary of this project.

2. Related Work. mist32 is also an original architecture developed in University of
Tsukuba [7]. It supports GCC, binutils, newlib and xv6 as operating system. It targets
for practical system with a variety of instructions. It has no FreeRTOS ports. It has
xv6; however, it is not suitable for learning RTOS. LEG [8] is a processor for educational
purposes. This processor uses ARMv5 ISA including MMU. It can boot Linux 3.19;
however, since it bases ARMv5, processor itself is complicated for educational purposes.
RISC-V is open-source ISA developed in University of Calfornia, Berkeley. RISC-V only
defines ISA, and it does not define implementation of processor. Users can add instruction
for their purpose. It has ports of GCC, binutils, newlib, FreeRTOS. Implementation of
processor itself varies and releases. Picoprocessor [9] which intends for hardware education
and software education such as OS with this processor is out of scope.

3. Design of SoC with sun32.

3.1. ISA. We designed 32 bits RISC processor [10]. We document basic information of
the architecture. We define sun32 to have 32 bits 32 integer registers r0 to r31. We make
r0 is constant register hardwired to zero and r31 as return address register on function call
instruction. We define special purpose control status register for condition code and some
reserved bits. The supported instruction is listed in Table 1. We define type of instruc-
tions as follows. Data transfer instructions mean moving data from memory to register
vice versa and moving immediate value to register. Arithmetic, Shift, Logical instructions
are arithmetic and logical instruction which calculates the result on ALU (Arithmetic and
Logic Unit) depending on the instructions. Compare instruction compares the operands
and set corresponding flags in control status register. Branch instruction is for uncondi-
tional, function call, return and conditional branch. Supervisor instruction is for moving
data between registers to control status register and return from interrupt instruction.
Assembler provides pseudo-instruction and converts to corresponding instructions.

Table 1. Instruction defined in sun32

Type Mnemonic Type Mnemonic
Data move lb, lbu, lh, lhu, lw, sw, sh, sb, lui Compare cmp
Arithmetic add, sub, mult, multu, div, divu, rem, remu Shift sll, srl, sra

Branch
beq, bne, bgt, ble, b, bult, bule, bugt, buge,
call, ret

Logical and, or, xor

Pseudo ldh, ldl, nop, mov Supervisor msr, mrs, reti

3.2. Interrupt handling. We define sun32 to allow essentially only one non-maskable
interrupt and external interrupt controller mask and prioritize the interrupt requests. Fig-
ure 1 shows connection between interrupt controller and processor. Interrupt controller
has 8 interrupt request signals irq0 to irq7 and irq0 has the highest priority. External de-
vices such as timer can make interrupt request via irq0-irq7 signals. Irq signals are saved
in IRR (Interrupt Request Register) for interrupt handling. IMR (Interrupt Mask Regis-
ter) holds mask value for IRR. Priority encoder decides which interrupt request to handle
by checking IRR and IMR. ISR (In-Service Register) holds currently handling interrupt.
On interrupt, interrupt controller asserts int signal to CPU. CPU checks an interrupt in
instruction fetch stage for simplicity. If CPU detects interrupt signal, it returns acknowl-
edge signal to interrupt controller. Interrupt controller returns corresponding vectoring
number in next clock cycle. CPU jumps to the location indicated by vectoring number.
The interrupt vector table is in memory location of zero. Each entry is word aligned



ICIC EXPRESS LETTERS, VOL.14, NO.7, 2020 671

Figure 1. Internal structure
of interrupt controller

Figure 2. Interconnection of
devices in SoC

Figure 3. UART sender
with FIFO

Figure 4. UART receiver
with FIFO

Figure 5. Timer module internals

and function pointer which takes no arguments and return type of void. On the exit of
interrupt handler, handler must issue reti (Return from interrupt) instruction to inform
end of interrupt to the interrupt handler. Programmer can issue software interrupt by
writing IRR register. Interrupt controller does not allow nesting interrupt for simplicity.

3.3. Implementation. We implement the SoC in NSL [11]. NSL provides ability to write
system in behavioral level in c-like grammar and it supports object-oriented features.
Figure 2 represents interconnection of the SoC. We use AHB-Lite bus [12] to connect
devices on SoC. AHB-Lite is subset of AHB and used in some ARM IP. CPU can access
device’s internal register via memory access instruction. We implement UART sender and
receiver. It both has 256 bytes ring buffer for data. We make baud rate to 19200 bps.
Figure 3 and Figure 4 show internal structure of UART. We implement internal baud
rate generator for 19200 bps from 50 MHz. Figure 5 shows block diagram of timer. Each
tick is in 50 MHz. We make timer to trigger interrupt request on expiry. Table 2 shows
problems arisen during implementing the SoC and its resolution. We make UART module
use 9600 bps originally however, in software simulation, it is to slow to simulate so we
raise bps to 19200 bps. We implement processor in 3 stage multi-cycle implementation,
however, with this design, critical path affects clock cycle severely, so we re-implement
processor in 5 stage multi-cycle and make it faster clock frequency.



672 C. KOYAMA AND N. SHIMIZU

Table 2. Problem during implementing SoC

Problem Resolution
Time spent
(approx.)

UART takes time to send or re-
ceive data in software simulation.

Originally, we use 9600 bps for
UART; however, we raise bps to
19200 bps. It enables faster sim-
ulation.

1 hour

Lower frequency (46.52 MHz) in
previous implementation of the
processor (3 stage multi-cycle im-
plementation).

Increase stages to 5 stages.
Faster frequency (66.6 MHz).

8 hours

Table 3. File lists of binutils we modified for porting

File name Purpose Lines
bfd/elf32-sun32.c ELF back end for sun32 430
bfd/cpu-sun32.c CPU information for BFD 42
cpu/sun32.cpu CPU description for CGEN 501
cpu/sun32.opc Supplemental routines and information for CGEN 94

gas/config/tc-sun32.c gas ports for sun32 229
gas/config/tc-sun32.h gas ports for sun32 52
include/elf/sun32.h Relocation constant 35

include/elf/common.h ELF magic number 1

Table 4. Relocation type available for sun32

Relocation type Purpose
R SUN32 NONE no relocation

R SUN32 PCREL 25 relocation of 25 bits pc relative branch
R SUN32 HI 18 relocation of 18 bits address
R SUN32 LO 14 relocation of 14 bits address
R SUN32 32 section and data relocation

4. Software Toolchain Support. We ported binutils for binary tools like assmebler,
linker, objdump. For C language support, we ported retargetable ANSI C compiler lcc
[13]. These tools enable easy and practical software development on this system.

4.1. Binutils. Binutils are collection of binary utilities such as assembler, linker, obj-
dump: Binutils rely on two libraries. BFD (Binary File Descriptor) library for binary
file manipulation and opcodes library for assembler and disassembler. Thus, we need two
libraries for porting binutils. Table 3 shows list of files for binutils ports. We use CGEN
[14] for porting opcodes library. CGEN takes CPU description and generates opcodes
library for the architecture. So, we did not need to write opcode library from scratch. We
modified gas source file to use ported BFD and opcodes library. We use CGEN for op-
code library generation so modification to gas source file is simply calling CGEN function.
We use CR16’s implementation of BFD as a reference since there is poor documentation
for BFD backend. We support five relocations in binutils and Table 4 represents them.
We use HOWTO table to describe simple relocation. Figure 6 shows HOWTO table en-
tries. HOWTO table describes bits manipulation for relocation targets. Table 5 shows
problems arisen during porting binutils and its resolution. We cannot solve disassembly
mis-output yet because we use CGEN to produce opcode library, it is hard to investigate
automatically generated code.



ICIC EXPRESS LETTERS, VOL.14, NO.7, 2020 673

Figure 6. HOWTO table entry for SUN32 NONE

Table 5. Problems arisen on porting binutils

Problem Resolution
Time spent
(approx.)

Relocation does not occur on link-
ing.

Fix HOWTO table entry. 30 hours

Wrong offset on PC relative
branch.

Adjust offset to branch. 1 hour

Wrong immediate value on load
upper 18 bits instruction.

Shift and AND immediate value. 1 hour

Wrong output of disassembly on
some condition.

Not solved. Still in investigating. 45 hours

4.2. ANSI C compiler. There are a lot of compiler choices such as GCC, LLVM/Clang.
Those compilers have few documentations for internal structure, so it requires time to
understand internals for porting. It is not easy for understanding of compiler internals.
We choose lcc a retargetable C compiler since internal structure of compiler and porting
example are explained in the book [13]. It is best materials for learning practical compiler
internals. Lcc is retargetable C compiler, clearly divided in machine independent front
end and machine dependent backend; thus we need machine dependent backend. Machine
dependent backend is in IR (Interface Record). Figure 7 shows IR for this architecture.
We can define size and alignment of each type in IR. We also need to register functions
to implement calling convention, creating function frames and other tasks in IR. Lcc uses

Figure 7. Definition of size and alignment in IR



674 C. KOYAMA AND N. SHIMIZU

Figure 8. Tree grammar to define assignment

Table 6. Problems arisen on porting lcc

Problem Resolution
Time spent
(approx.)

Implementation of sun32 does not
support floating point arithmetic.

Use Berkeley SoftFloat library for
code generation.

10 hours

Wrong argument passing on func-
tion call.

Fix register allocation to follow
calling convention.

5 hours

small specification of tree grammar to generate code generator. Figure 8 shows example
of specification to define integer assignment for code generator. Table 6 shows problems
arisen during porting lcc for this system and its resolution. We decide to use software
float library for floating point arithmetic supports.

4.3. FreeRTOS. FreeRTOS is small, easy to use real time operating system and de-facto
standard for MCU and small processor. It is thus suitable for small system such as sun32
SoC with no Memory Management Unit (MMU). Since FreeRTOS is small and simple
system, it is easy to understand internals, so it is suited for learning practical real time
operating system. We port FreeRTOS for sun32 SoC. FreeRTOS relies on some head-
ers and functions in standard C library. We initially try to port newlib for our system;
however, lcc cannot compile some code in newlib so to minimize the porting time, we
determine necessary header files and functions for FreeRTOS and implement them from
scratch including startup file. We have linked this library to FreeRTOS statically. Ports
of FreeRTOS need modification to the files listed in Table 8. Modifications are basically
configuration of FreeRTOS and register saving and restoration. We run demonstration
program which just creates two tasks and make context switch at timer interrupt of 1
sec interval. Each task prints its name on UART. Result and memory usage are shown
in Figure 9 and Figure 10. Sample program occupies 46560 bytes which can fit in ad-
dress space of 16 bits. Table 7 shows problems arisen during porting FreeRTOS and its
resolution.

Figure 9. FreeRTOS memory usage with minimal libc

Figure 10. Sample program for task switch



ICIC EXPRESS LETTERS, VOL.14, NO.7, 2020 675

Table 7. Problems arisen on porting FreeRTOS

Problem Resolution
Time spent
(approx.)

Newlib cannot compile with lcc.
Determine standard c facilities
used in FreeRTOS and implement
minimum C library.

20 hours

No facility to save and restore con-
trol status register.

Add instruction to save and re-
store control status register from
or to general purpose register.

3 hours

Table 8. File lists of FreeRTOS port

File name Purpose Lines
Source/portable/lcc/sun32/port.c Architecture dependent routines 170

Source/portable/lcc/sun32/portasm.S Architecture dependent assembly 39
Source/portable/lcc/sun32/portmacro.h Architecture dependent macro 151

Demo/sun32/main.c FreeRTOS Demo program main 35
Demo/sun32/FreeRTOSConfig.h FreeRTOS configuration 137

5. Verification of System. For simulation of the system, we use verilator to generate
C++ codes from Verilog HDL which converted from NSL by nsl2vl then compile C++
files for executable for simulation. UART output is connected to standard output. We
observe waveform on GTKWAVE. We compile software with our software toolchain for
this system then load with simulator.

5.1. Synthesis result for MAX 10. Table 9 shows number of lines of components in
SoC written in NSL. Owing to higher level of description in NSL, we can implement
the SoC approximately 1000 lines of code. Table 10 shows synthesis result on Quartus
18.1.0 Lite Edition in 4 different configurations (3 and 5 stage multi-cycle and pipelined
implementation). We used block RAM for instruction and data memories with 16384
words. Usage of total logic element for all configuration is nearly 10% so there is still
room for other peripherals or systems. 5 stage implementations are approximately 16%
faster clock frequency than 3 stage implementations.

Table 9. Modules of SoC in NSL and line size

Module name Lines Module name Lines Module name Lines
alu32 121 interrupt ctr 150 cla32 17
reg32 200 condcheck 42 memory access unit 73
core 48 instruction fetch unit 65 inc32 17
div32 48 ahb lite master 133 ahb lite slave 117

uart sender 122 uart receiver 144 timer 39
fifo 35 cache 75

Table 10. Synthesis result with Quartus 18.1.0

Configuration Logic elements Registers Fmax
5 stage multi-cycle 4573 (9%) 2193 66.6 MHz
5 stage pipe-line 4612 (9%) 2438 65.2 MHz

3 stage multi-cycle 4868 (10%) 2263 47 MHz
3 stage pipe-line 4886 (10%) 2296 47 MHz



676 C. KOYAMA AND N. SHIMIZU

5.2. Dhrystone result. We use benchmark as Dhrystone ver2.1. We build benchmark
software with lcc with register attributes, binutils. This benchmark successfully ran on 4
different configurations (3 and 5 stage multi-cycle and pipelined implementation). Thus,
no implementational error was found on the SoC and software toolchain. Table 11 shows
the result of this benchmark on 4 different configurations. Dhrystone/sec indicates how
many main loops of Dhrystone benchmark runs in one second. By dividing Dhrystone/sec
with 1757 which is the result of Dhrystone benchmark on VAX11/780 gives DMIPS (Dhry-
stone MIPS).

Table 11. Dhrystone v2.1 result with 4 configurations

Configuration Dhrystone/sec DMIPS DMIPS/MHz
5 stage multi-cycle 7129 4.05 0.06
5 stage pipe-line 24328 13.84 0.21

3 stage multi-cycle 12618 7.18 0.16
3 stage pipe-line 18726 10.65 0.22

The five stages pipelined implementation got the highest result in this section. The
five stages pipelined implementation is 34% faster than the five stages multi-cycle imple-
mentation. The three stages pipelined implementation is 14% faster than the three stages
multi-cycle implementation.

6. Conclusion. Through this project, we can effectively acquire knowledge of computer
system as whole including processor, object files, RTOS, compiler, binutils and how to
use software toolchain in small amount of work time. Figure 11 shows Gantt chart for
work time. We spent 8 months as a total for construction of system. We spent much time
in porting binutils. There are few documentations about porting or internal structure.
We had to inspect other ports of binutils to understand how to port.

Figure 11. Gantt chart representing work time

Porting of FreeRTOS itself is relatively easy; however, implementing necessary standard
C library is taking time since we cannot compile newlib with lcc.
We have gained insight of connection among components such as processor to software

toolchains and deeper knowledge of processor, practical system, software toolchain. This
method is effective for learning and education of both software and hardware domains
ranging from processor to operating system.

REFERENCES

[1] C. Perera, C. H. Liu, S. Jayawardena and M. Chen, A survey on Internet of Things from industrial
market perspective, SIEEE Access, vol.2, pp.1660-1679, 2014.



ICIC EXPRESS LETTERS, VOL.14, NO.7, 2020 677

[2] J. Kraft, Real-time demands of the IoT, New Electronics, vol.49, no.15, pp.26-27, 2016.
[3] D. C. Hyde, Teaching design in a computer architecture course, IEEE Micro, vol.20, no.3, pp.23-28,

2000.
[4] K. Khongsomboon, N. Kondoh and N. Shimizu, Microprocessor development using SFL for educa-

tional purposes, Proc. of the 6th International Conference on ASIC, pp.342-345, 2005.
[5] Y. Iida and N. Shimizu, Design of POP-11 (PDP-11 on programmable chip), Proc. of the 2004

Conference on Asia South Pacific Design Automation: Electronic Design and Solution Fair 2004,
Yokohama, Japan, pp.571-572, 2004.

[6] M. Ohyama and N. Shimizu, Development of i8086 compatible processor for VLSI design education
and system on chip, COOL Chips VII: IEEE Symposium on Low-Power and High-Speed Chips, p.81,
2004.

[7] https://www.ipa.go.jp/files/000028800.pdf, Accessed on 7 May, 2020.
[8] M. Waugaman et al., LEG processor for education, The 11th European Workshop on Microelectronics

Education (EWME), Southampton, pp.1-5, 2016.
[9] C. J. Jiménez-Fernández, C. Baena, P. Parra, M. Valencia and A. A. Lopéz-Hinojo, Educational

applications of a pico-processor design, Technologies Applied to Electronics Teaching (TAEE), Seville,
pp.1-5, 2016.

[10] C. Koyama, K. Sasaishi, S. Nukita and N. Shimizu, Development of original architecture CPU for
SoC education, Parthenon Society, vol.44, pp.43-50, 2018.

[11] http://www.overtone.co.jp/products/overture/, Accessed on 7 May, 2020.
[12] http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html, Accessed on 7 May, 2020.
[13] D. R. Hanson and C. W. Fraser, A Retargetable C Compiler: Design and Implementation, Addison-

Wesley Professional, 1995.
[14] https://sourceware.org/cgen/docs/cgen 1.html, Accessed on 7 May, 2020.


